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0 Introduction 

 

 

This is a work in progress 

This document is very much a work in progress. The current version of it is by no means meant 

to be published in any form; it is merely the collection of the author’s personal drafts and a 

‘snapshot’ of his current ideas. No proofreading has been performed, propositions might not 

even hold, and cross-references are not implemented. Thus, this draft is provided ‘as is’, 

with the only intension of illustrating the current ‘overall’ progress of the work. 
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0.1 Notation 

The following is a quick guide to the notational conventions used in the book, especially in the 

chapters on classical mechanics. 

We will use boldface for vectors, as in     . The length of a vector will be denoted by   | |  

If there already is a boldface letter   denoting a vector, we might introduce the length   without 

any explicit remarks. A hat above a vector indicates that the vector is of unit length, as in  ̂. By 

necessity, now, | ̂|   . If there already is a vector     we might introduce  ̂  
 

 
  without 

any explicit remarks. In a Cartesian coordinate system (     ), the basis vectors are denoted  ̂, 

 ̂, and  ̂. When convenient, and when there is no risk of confusion, we will allow ourselves to 

identify points with their corresponding radius vectors. 

The statement     means that the value   is assigned to   at the instance of the formula. 

    means that   has previously been assigned the value  , that is,   is equal to   by (an earli-

er) definition. If   and   are functions of a single variable,    , say, then we may write 

 ( )   ( ) as a shorthand notation for  ( )   ( )     . 

There are often two or more frames of reference in the same discussion. In the typical case of 

two frames ℱ1 and ℱ2, we use a prime to indicate that a variable is with respect to the second 

frame, ℱ2. For instance, if the coordinates of some object are (     ) relative to ℱ1, we will de-

note the coordinates of the same object but with respect to ℱ2 by the triplet (        ). A dot, as 

in  ̇, means a derivative with respect to time (or any other single parameter), that is,  ̇  
 

  
 , 

and  ̇  
 

   
  . If we at some time have a function   of one variable   that does not have the 

interpretation of ‘time’, we might explicitly introduce the notation    for the derivative. 

We will usually skip the brackets in powers of function values. For instance,  ( )  [ ( )]   We 

will sometimes make use of the very convenient Iverson bracket, which is a map 

[ ] {           }  {   } defined by 

[ ]  {
     
       

 

Finally, we define the integer interval 

[    ]  [   ]    

and include   in the natural numbers: 

  {         }     { }  
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1 Classical Mechanics 

 

 

 

 

 

 

 

Figure 1. A small part of an ideal chain hanging in a constant 
force field, such as the field of gravity at the surface of the 
Earth. In Section 1.4.6 we will prove that such a chain will 
form the graph of the hyperbolic cosine. A few sections later, 
we will show that the very same fundamental force will cause 
planets to orbit stars in elliptical orbits, and comets to fly by 
stars in hyperbolic trajectories. 

𝑔  Δ𝑚 

 

Δ𝑥 

 
Δ𝑦 

(𝑥 𝑦) 

(𝑥 + Δ𝑥  𝑦 + Δ𝑦) 
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1.1 Space and Time 

To specify a point in space, we need a spatial coordinate system. The general idea is that there is 

a one-to-one correspondence between physical points in space and elements in     . The 

procedure is familiar to everyone: One chooses some physical point as the origin. At this point, 

one imagines three (geometric) basis vectors, which are identified with the standard basis 

(     ), (     ), (     ) of   . Then the general correspondence is obvious: if we get to a particu-

lar object from the origin by combining  ,  , and     of these geometric basis vectors using the 

rules of geometric vector algebra, we say that    , and   are the coordinates of the object’s spa-

tial position, and we associate this spatial position to the element (     )    . Almost always 

one makes sure that the physical basis vectors are of the same length (usually a metre), are per-

pendicular to each other, and are ordered so they obey the right-hand rule. In this case, we say 

the system is a Cartesian system. For the rest of this section, we will assume all spatial coordi-

nate systems to be Cartesian. 

Similarly, to specify the time of some event, we construct a one-to-one correspondence between 

moments in time and some set  , usually   or some interval subset of  , called the timeline or 

the time axis. The standard procedure is to make a choice about what real-world moment is to 

correspond to     (or some other fixed element of  ), and then one decides that a change of   

in time value corresponds to a physical duration of a second (or some other convenient dura-

tion). 

A coordinate system is a spatial coordinate system together with a timeline. Hence, it consists of a 

choice of spatial origin, three basis vectors, an origin in time, and a time unit. Given a coordinate 

system, any pointlike event, defined as an event to which we can associate a precise point in 

space and moment of time, corresponds to a unique element in    . This product is sometimes 

called spacetime.  [In the literature, one might also see    .] Thus, in pre-relativity physics (al-

so called Newtonian physics), the concept of spacetime is a very simple and graspable thing. 

Let us now turn to the problem of dealing with multiple coordinate systems simultaneously. To 

begin with, we will assume that all coordinate systems are at rest relative to each other; that is, 

the origin of each system is stationary (has constant spatial coordinates) relative to every other 

system. Consider Figure 2. 

 

Figure 2. Three spatial coordinate systems in Central Park, New York City. 

ℱ1 

�̂�  
�̂�  

�̂�  

𝑂  

𝑃  

𝑃2 

𝐫 

ℱ3 

�̂�  
�̂�  

�̂�  

𝑂  
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Here we have indicated three spatial coordinate systems, ℱ , ℱ , and ℱ . Notice that ℱ  and ℱ  

have the same physical basis vectors. Consider the points    and  2, at which two insects are 

hovering at some moment of time; one is at    and the other is at  2. These points exist inde-

pendent of any coordinate system. Therefore, we say that they are geometric points. The coordi-

nates of the points depend on the coordinate system, however. The vector   is the displacement 

from    to  2. This is also an object that exists independent of any coordinate system; hence, it is 

called a geometric vector. The components of  , however, depend on the coordinate system. No-

tice that the components of   are the same in ℱ  and ℱ , because these systems share the same 

geometric basis vectors: while the coordinates of a point depend on both the choice of origin and 

the basis vectors, the components of a vector depend only on the basis vectors. 

In general, two coordinate systems are in relative motion, that is, the origin of one system is 

moving with respect to the other system. This is the case, for instance, if one of the systems is 

stationary on the ground while the other is fixed inside a moving train. When we explicitly in-

clude information about the motion of a coordinate system, we call it a (mathematical) frame of 

reference. Restrict for a moment attention to mathematical frames that do not accelerate relative 

to the ground. If the train is not accelerating, then all frames stationary on the ground and all 

those fixed inside the train are admissible, as are all other frames moving with constant velocity 

relative to these. We denote the set of all such reference frames by ℱ. Introduce a relation   on 

ℱ by declaring that ℱ  ℱ  iff the origin of ℱ  is at rest relative to ℱ  at all times, where 

ℱ  ℱ  ℱ. Clearly,   is an equivalence relation on ℱ, and we shall call the equivalence classes 

physical frames of reference. 

One might ask if some of the classes ℱ   contain frames at ‘absolute rest’. Naïvely, a child might 

argue that the ground is in no motion at all, while all the cars, trains, and velocipedes are in mo-

tion. However, this is obviously a biased statement, since the Earth is very much in motion 

around the sun, which in turn, is in motion in its cluster of stars, and eventually the Milky Way 

galaxy. In addition, the galaxy itself is in motion relative to all other galaxies, and so on. Hence, in 

out interpretation of Newtonian physics, there is no concept of absolute rest, only relative rest. In 

fact, no known experiment can distinguish any preferred frame; all frames in ℱ are equivalent. 

In the discussion in the last paragraphs, we ignored any relative acceleration. Of course, in gen-

eral, two frames are accelerating relative to each other. Hence, the entire set ℱ contains only a 

very special selection of frames, namely, those in uniform motion (i.e., no acceleration) relative 

to the ground. By the same arguments as in the last paragraph, one might suspect that there is 

nothing special about ℱ, and that, in fact, all mathematical frames of reference are equivalent. 

This, however, is not the case in Newtonian mechanics. Instead, it is postulated that there exists 

(at least locally) a natural collection of mathematical frames that, in some sense, have vanishing 

absolute acceleration (but this shouldn’t be taken too literally). Such a frame with ‘vanishing 

absolute acceleration’ is called an inertial frame, or, less appropriately, a non-accelerating frame. 

It turns out that to a good approximation, a frame of reference attached to the ground of the 

Earth is inertial. Even more so is a frame in free fall in outer space, which might be considered 

the ‘prototype’ of an inertial frame at that location. From now on, we will redefine ℱ to be the set 

of all inertial frames with origins in the vicinity of the objects under consideration. The seeming-

ly strange requirement that they need to be locally concentrated in space will be explained later. 

But what is an inertial frame? How can you tell if a frame is inertial or not? A commonly-stated 

answer in Newtonian mechanics is that a frame is inertial iff the following implication is valid: 
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This is Newton’s first law, as we will discuss more thoroughly in the next section. Notice that the 

frame enters the picture because we measure acceleration with respect to it; only according to 

some frames does the particle acceleration vanish. It is very important to notice that it is as-

sumed that the criterion given above yields the same answer no matter what particle is used to 

test the frame. (Otherwise the criterion would not make sense.) 

Consider a free particle (i.e., a particle on which no forces act) studied using two different math-

ematical frames of reference, ℱ  and ℱ . Let  ( ) be the radius vector of the particle from the 

origin of ℱ  at time  , and let   ( ) be the radius vector from the origin of ℱ  at the same time. 

Also, let  ( ) be the instantaneous radius vector of the origin of ℱ  relative to ℱ . See Figure 3. 

 

Figure 3. Two frames of reference in relative motion. 

Clearly, as geometric vectors, 

 ( )   ( ) +   ( )       

Differentiating twice with respect to time yields 

 ̈( )   ̈( ) +  ̈ ( )      

where  ̈( ),  ̈( ), and  ̈ ( ) are the acceleration of the particle with respect to ℱ , the accelera-

tion of the origin of ℱ  with respect to ℱ , and the acceleration of the particle with respect to 

ℱ , respectively. Assume that ℱ  is (essentially) inertial, e.g., fixed to the ground of the Earth. 

Then (↑) holds, and since the particle is free,  ̈( )    by modus ponens. Hence, 

   ̈( ) +  ̈ ( )       

Therefore, 

 ̈( )     ̈ ( )     

It is trivial to verify that  ̈ ( )    ℱ             , and therefore (↑) reads, in words, 

ℱ      ℱ                                       ℱ               

Hence, given any inertial frame, all other (nearby) inertial frames, and only those, move with 

constant velocity relative to the first frame. This motivates our introduction of ℱ and ℱ  ⁄ : ℱ is 

the set of (local) natural frames of reference, and the frames in ℱ differ only by their relative 

velocity. There are quite a few subtleties regarding frames and inertial frames, and we will re-

turn to these after we have considered some simpler things first. 

�̂� 

�̂� 

ℱ  �̂�  

�̂�  

ℱ  

𝐑(𝑡) 

𝐫(𝑡) 
𝐫 (𝑡) 
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1.1.1 The Significance of the Physical Frame 

The equivalence relation   is very useful in Newtonian physics, because many things are similar 

when analysed with different mathematical frames belonging to the same physical frame, but 

appear different when analysed with different frames belonging to different physical frames. The 

simplest example of this is the velocity vector. Consider a leaf falling from a tree with a constant 

velocity towards the ground. When analysed in a frame fixed on the ground, the leaf appears to 

be falling with the velocity vector   shown in Figure 4. 

 

Figure 4. A falling leaf as seen from the ground. 

 

Figure 5. The same falling leaf as seen from a train. 

 

𝐯 

  
𝐯  
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Now, consider the same situation, but observed from a train moving to the right with the same 

speed as the leaf is falling (relative to the ground). From the point of view of a passenger on the 

train, the leaf’s velocity vector is now   , as shown in Figure 5. Hence, as seen from the ground, 

the leaf’s velocity vector points towards the small, red, leaf on the ground, while, as seen from 

the train, the ‘same’ velocity vector points towards the big, brown, leaf on the ground. The con-

clusion is that the velocity vector of an object is not a geometric vector, but depends on the phys-

ical frame of reference. Inside a given physical frame, however, the vector looks the same no 

matter what mathematical frame is used – only the components of the vector differ between 

mathematical frames. Thus, only if we restrict our attention to a specific physical frame of refer-

ence, we may allow ourselves to think of a velocity vector as a geometric entity. 

The reader may recall Figure 2. The displacement vector   shown there clearly is a geometric 

vector. Now, ignore the insect located at  2. Instead, imagine that     is the velocity of the in-

sect initially at   . Then, as shown above,   is not a geometric vector. Only according to some 

observers is it perpendicular to the surface of the lake! Now, let     be the acceleration of the 

insect, instead. Then, to some extent, ‘normality’ is restored, because acceleration vectors are 

independent of frames of reference as long as we restrict attention to inertial frames, that is, to 

frames in ℱ. Thus, accelerations vectors – and therefore force vectors – may be thought of as 

geometric entities if we only consider inertial frames. You already knew this: surely the force of 

gravity, and the ensuing acceleration of a cup of coffee, points straight to the ground no matter if 

you stand on the ground or in a train moving with constant velocity. 

The observations made above are formalised in the Galilean transformation, which relates coor-

dinates between two inertial frames. Let ℱ  ℱ  ℱ. Let  ( ) be the radius vector of an insect 

from the origin of ℱ  at time   and let   ( ) be the radius vector from the origin of ℱ  at the 

same time. Also, let  ( ) be the radius vector from the origin of ℱ  to the origin of ℱ  at this 

time. See Figure 6. 

 

Figure 6. Two coordinate systems in relative motion. 

The Galilean transformation is simply 

 ( )   ( ) +   ( )       

Differentiating with respect to time, 

 ̇( )   ̇ +  ̇ ( )      

�̂� 

�̂� 

ℱ  �̂�  

�̂�  

ℱ  

𝐑(𝑡) 

𝐫(𝑡) 
𝐫 (𝑡) 
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where  ̇( ) is the velocity vector of the insect relative to ℱ ,  ̇ ( ) is the velocity relative to ℱ , 

and  ̇, which is independent of time, is the velocity of the origin of ℱ  relative to ℱ . Hence, if 

ℱ  ℱ ,     and so  ̇( )   ̇ ( ). Differentiating once more, 

 ̈( )   ̈ ( )      

because  ̈   . Thus, the acceleration vector is independent of the choice of inertial frame; only 

the components can differ. 

Finally, let us introduce some standard nomenclature: two frames ℱ  and ℱ  ℱ are in stand-

ard configuration iff 

(1) they have the same geometric basis vectors, 

(2) the velocity of the origin of ℱ  relative to ℱ  is a non-negative multiple of the first basis 

vector of ℱ , and 

(3) at     also      and at this time, their spatial origins coincide. 

In this case the Galilean transformation reads 

        

     

     

     

where   | |  | ̇| is the relative speed between the frames. 

1.1.2 The Concept of Inertial Frames 

You might feel a bit uneasy about the introduction of a preferred set of frames, such as ℱ. If so, 

you can rest assured because this concept is abandoned in the theory of General Relativity. For 

now, let us investigate the concept of inertial frames from a sceptical point of view without brin-

ing (too much) relativity into the discussion. 

In every-day situations, it is rather easy to distinguish an inertial frame from a non-inertial 

frame. The traditional example is a person standing on the ground and in a bus (well, not simul-

taneously, obviously!). On the ground, we know that the force of gravity acts in the direction 

towards the centre of the Earth, and an equally large upward-pointing normal force is exerted on 

the person from the ground. Hence, the net force is zero, and the person is not accelerating rela-

tive to the ground. Hence, the ground is inertial. The very same experiment can be performed in 

a bus moving with constant velocity relative to the ground. Still no net force, and still no acceler-

ation of the person. Hence, the bus is also an inertial frame. However, if the bus begins to accel-

erate, suddenly the person seems pushed towards the rear end of the vehicle, although no addi-

tional force is acting on him. Now the bus is not an inertial frame. 

What is the issue, then? Well, one issue is the following: How do we really know that no addi-

tional force (pointing towards the rear end of the bus) acting on the body set in at the time when 

the bus began to accelerate? The classical answer, of course, is that we have a very complete 

theory of classical mechanics, and we have classified all the forces acting in it. We have managed 

to create a theory that works exceedingly well, and is self-consistent. Hence, we can say for sure 

that, within the theory of Newtonian physics, no additional force kicks in. 

A second issue is this: to test whether a frame is inertial or not, we need a particle on which the 

net force is zero. In practice, we cannot find any such particle, because all massive particles are 



ANDREAS REJBRAND D R A F T  http://english.rejbrand.se 

 17/314 

affected by the long-range force of gravity from every other massive particle in the universe. 

Why don’t we notice this effect, for instance, when we are standing in a bus? The answer is that 

the force of gravity affects all massive particles, including the bus, the persons in the bus, and 

every atom of the Earth itself, in exactly the same way. 

Let us consider a third issue. Consider a container in free fall in the vicinity of the Sun. An astro-

naut inside the container, but not aware of its location in the universe, will observe that the con-

tainer behaves exactly like an inertial frame of reference. For example, a ball carefully positioned 

at some place inside the container will remain there until provoked by some force known to the 

astronaut. Of course, you can perform the same experiment in a container in free fall close to the 

Earth. Both these frames will be found to be inertial. But they are clearly accelerating relative to 

each other (one is accelerating towards the Sun, the other towards the Earth), thus contradicting 

the result that all inertial frames are in uniform motion relative to each other. What is the cause 

of this contradiction? 

The answer may seem obvious. Neither of the frames are ‘really’ inertial frames, because, clearly, 

they are being accelerated towards the sun and the Earth, respectively. Hence, the ball inside the 

first container is affected by a strong gravitational force, and, indeed, is accelerating towards the 

sun. But since this applies equally to every atom of the container, including the matter that 

makes up the astronaut himself, he cannot know this. This seems to resolve the issue, because, 

since neither frame is inertial, nothing says that they should be in uniform motion relative to 

each other. 

But this raises another question. By the argument given in the last paragraph, a reference frame 

attached to some material body (a planet, a comet, a spacecraft, …) can never be inertial, because 

every massive particle in the entire universe is affected by the force of gravity; hence, it is accel-

erating. In fact, the ‘explanation’ given in the last paragraph is almost as naïve as the explanation 

given by the child stating that the ground of the Earth is an ‘absolute rest’ frame. Indeed, one 

might argue, if we cannot use experiments to determine whether a frame is inertial or not, then 

the concept of ‘inertial frame’ doesn’t even belong to physics! 

A well-known (but outdated) ‘resolution’ of the issue consists of actually postulating that there 

exists a frame of ‘absolute rest’, perhaps by defining this frame to be stationary relative to the 

(centre of mass of the?) fixed stars. Then every frame moving with constant velocity relative to 

this frame is defined to be inertial. This ‘resolution’ is far from satisfactory. For instance, what 

about other galaxies? These are very much accelerating relative to our galaxy. 

The modern resolution of the issue can be approached by studying the statement and proof of 

the result given earlier (c.f. page 13), that two inertial frames must be in uniform motion with 

respect to each other. [Given that we have found a ‘counterexample’ for this ‘theorem’, it is in-

deed very natural to reinvestigate it!] The problem is the assumption that any particle can be 

used to verify the criterion (↑) that the frame is inertial. In reality, two different particles can 

yield different outcomes. If they are close to each other, the difference in their acceleration due 

to the field of gravity is small, and the assumption is valid (to an extremely good degree), but if 

the distance becomes ‘astronomical’, differences are to be expected, as in this case. In the deriva-

tion of the result on page 13 we used the same particle to test ‘inertia’ in both frames, but if the 

frames are very far away, then at least one of the frames will be very far from the particle. Even if 

the frame at the Earth seems inertial when tested by the ball in its container, it might not (in fact, 

does not) seem inertial when tested using the ball in the other container, near the sun. 
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What is the cause of the difference? The answer is the big difference in gravitational field be-

tween the two locations. To see this, consider again the container near the sun. Indeed, this 

seems inertial when tested by the ball inside the container. If we add another ball to the contain-

er, then both will yield the same answer (not exactly, but a human eye wouldn’t detect any dif-

ference). Now imagine that the second ball is moved a few kilometres away from the sun, to-

wards the Earth. Still no major difference; the force acting on the ball is essentially the same as 

before. Move it even further away. Eventually, it will come close to the Earth, and now the accel-

eration will be completely different. It will point towards to the Earth, and, obviously, it will ac-

celerate relative to the container at the sun. 

The conclusion is the following: the test (↑) is essentially independent on the location of the test 

particle, as long as we restrict the attention to a region in space in which the gravitational field is 

roughly constant. Of course, this includes all every-day scenarios in homes and laboratories on 

Earth. If one needs to investigate regions in space with significant changes of gravitational field, 

one needs to take the sources of these changes into account, like the sun and the Earth. 

The ‘modern’ definition of an inertial frame is a frame with its origin in free fall, that is, the origin 

moves exactly like a small test particle would if it were only affected by the field of gravity, and 

no other forces. Even though this frame is accelerating, an astronaut in a container fixed at the 

origin would perceive the frame as inertial. Again, this is because the container, the astronaut, 

and his ball – indeed, every massive particle there is – is affected by the very same field of gravi-

ty: if the container is so small that we can neglect changes in the field of gravity inside it, then all 

these objects will have the exact same acceleration because of gravity. 

You might get the feeling that the force of gravity is very different from the other forces of na-

ture. We will get back to this point, which, in fact, is the starting point of General Relativity. 
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1.2 Newton’s Laws 

Classical mechanics is the foundation of physics, and Newton’s laws are the postulates of classi-

cal mechanics. Hence, their significance is paramount. The laws are due to Sir Isaac Newton in 

his Philosophiæ Naturalis Principia Mathematica, first published in 1687, and applies to matter 

particles in space. By ‘matter particle’, we mean a body of matter with such a small extent that 

we can neglect deformation and rotation of the body. In order to formulate the three laws, we 

need first to define the quantities involved. It is understood that we work in some mathematical 

frame ℱ    ℱ. In this frame, we associate with a particle a position vector   (     ) which is 

allowed to change with time, if the particle is moving relative to ℱ1. The time derivative    ̇ is 

called the velocity of the particle, and the second derivative    ̈ is called the acceleration. A 

particle moving with zero acceleration is moving with constant velocity, and, consequently, 

along a straight line with direction  ̂ and constant speed  . Each matter particle has a well-

defined property called its mass that is constant in time. In classical mechanics, the mass is a 

measure of matter content; indeed, any material body can be thought of as being composed of   

‘standard matter particles’ of equal mass  , and thus has mass   . More quantitatively, we will 

see that Newton’s second law of motion postulates that the mass of an object is a measure of the 

object’s resistance to change its velocity. Furthermore, Newton’s law of universal gravitation 

postulates that the masses of two objects determine the magnitude of the force of gravity be-

tween them; we will get back to this law. 

After mass, the most important concept in Newtonian physics is force. A force is a vector quantity 

that, as postulated by Newton’s second law of motion, tries to alter the velocity of a particle. 

Such a force is said to ‘act’ on the particle. If   forces     2      act on a particle, the net effect 

will be indistinguishable from that caused by a single force   ∑   
 
    acting on the particle.  

Now, let us formulate Newton’s laws. In any inertial frame, 

1.        . If the net force of a particle is zero, then its velocity is constant. That is, if 

‘nothing happens’ to a particle, it is not its position that is constant, but its derivative, the 

velocity. 

2.     . The net force on a particle is equal to the product of its mass and its accelera-

tion. Notice that the first law is a consequence of the second law. 

3. If a particle   affects   with a force    , then   affects   with a force          of equal 

magnitude but opposite direction. 

 

Figure 7. Illustration of Newton’s third law. 

There are two ways of thinking about force. Either, one might consider force as a geometric enti-

ty in space, that is, as a geometric vector, or one might consider the force to be defined in terms 

of the measurable acceleration of a particle, using Newton’s second law, as seen from some 

frame. 

   

𝐅𝐴𝐵 𝐅𝐵𝐴 

A B 
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APPROACH 1: The most naïve approach is to consider force as a geometric vector. In this ap-

proach, the force is a geometric entity that exists independent of frame of reference. Consider an 

apple hovering at rest inside the ISS. If someone begins to push the apple, then the force on the 

apple is a well-defined geometric vector  , that – at least in principle – every observer (inertial or 

not) can determine. This approach also goes hand-in-hand with the concepts of the gravitational 

and electrostatic force fields, which are (literally) defined as geometric vector fields. The main 

issue with this approach is that there is no direct way of measuring the force. Still, this is the 

most common approach. 

APPROACH 2: The other approach is to define the force as the product of mass and acceleration 

of an object. Defined this way, the force is (in principle) very easy to measure in any frame of 

reference, for the acceleration is easily measurable (in principle). 

The situation is further complicated by the fact that the concept of ‘mass’ itself might be hard to 

define in a satisfying manner. If one thinks that the concept of force is more natural than the 

concept of mass, then one can postulate the existence of forces, and then use Newton’s second 

law to define the mass of a particle. 

1.2.1 The Invariance of Newton’s Laws 

We will ‘show’ the invariance of Newton’s laws under Galilean transformations. This is not as 

straightforward as one might suspect, mainly because the concept of ‘force’ lacks a clear, intrin-

sic, definition, as discussed above. 

First, assume that ℱ     ℱ and ℱ     ℱ are two mathematical frames in the same physical 

frame  ℱ. (1) Clearly, a translation of the time variable will not change any of the laws of phys-

ics, since the origin of time is arbitrary. (2) A pure rotation corresponds to a mere change of vec-

tor basis. That is, observers will find the same geometric vectors, but their components will vary. 

The laws of physics will not change, because space itself is assumed isotropic in Newtonian me-

chanics. (3) A translation of the origin will not affect the physics, since the origin is arbitrary; in 

other words, space itself is assumed homogeneous. 

Now let ℱ     ℱ  and ℱ     ℱ  be two reference frames in two distinct physical frames 

 ℱ  and  ℱ . Assume that Newton’s laws are valid in ℱ . We want to show that they are valid 

in ℱ  as well. Since the first law is a consequence of the second law, we will not treat this sepa-

rately. Therefore, let   be an object that is found to obey the second law 

     

in ℱ . In Newtonian physics, the mass   of an object is an intrinsic property of the object, and 

therefore, observer-independent. As shown above, the acceleration vector    of   as perceived 

by an observer in ℱ  is equal to the acceleration vector as perceived from ℱ , that is,      [but 

the components of this vector depend on the vector basis of the frame]. As a geometric vector, 

the right hand side of (↑) is thus the same in both frames. But what do our observers in the two 

frames have to say about the forces on  ? 

According to the first approach given above, we consider the force as given by a force field, e.g. 

the gravitational field from a massive particle, and argue that this is a geometric object and in-

dependent of physical frame. Then it follows that the LHS of (↑) is invariant too, and we have 

shown that Newton’s second law is invariant under a Galilean transformation. According to the 

second approach given above, ‘force’ is by definition precisely the RHS of (↑), and so Newton’s 

second law is valid in ℱ2, and, in addition, we have now shown that the force is found to be the 
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same in any physical frame. That is, since the acceleration, as a geometric vector, is the same in 

any inertial frame, it follows that the force, as a geometric vector, is also the same in any inertial 

frame. Hence, in practice, the difference between the two approaches is not very important. 

1.2.2 Non-Inertial Frames 

Newton’s laws are only valid in inertial frames. To aid the discussion about non-inertial frames, 

we will introduce a new concept, to be used only in this subsection. Recall that we defined a 

‘physical frame’ as an equivalence class of (mathematical) frames of reference, the origins of 

which are at rest (that is, have zero geometric velocity) relative to each other. We now define a 

‘super-physical frame’ as an equivalence class of (mathematical) frames of reference, the origins 

of which have zero geometric acceleration relative to each other at every time. Then, intuitively, 

all inertial frames constitute one super-physical frame. Indeed, two inertial frames are moving 

relative each other with constant velocity. If another frame ℱ  is accelerating with constant ac-

celeration     ̂ relative to an inertial frame ℱ , then this frame belongs to a different super-

physical frame, together with frames that are rotated or displaced in space or velocity relative to 

ℱ . 

It is easy to show that, if Newton’s laws are valid in one super-physical frame (such as the super-

physical frame of inertial frames), then they cannot be valid in any other such frame. The proof 

depends on which approach we choose to employ when talking about forces. 

In APPROACH 1, the force on an object is an intrinsic, geometric, property, and so it is the same 

in every frame. Let   be the force on an object  . Let ℱ      ℱ  and ℱ      ℱ  be two 

frames in different super-physical frames. Assume that Newton’s laws are valid in ℱ . Then the 

acceleration is 

  
 

 
  

where   is the force on  . In   ℱ , the acceleration is   , and since this is a different super-

physical frame,     . But since the force is an intrinsic, geometric, property, 

   
 

 
  

which is a contradiction. 

Let us consider the same set-up but using APPROACH 2. Assume that the universe is empty ex-

cept for one, single, particle, which we call  , and which is at rest relative to ℱ1. In this frame, 

    and therefore, by definition,    . Relative to ℱ , the acceleration of   is     , and so, 

by definition,     . Hence, even though the particle is alone in the universe, ‘something’ is pro-

ducing a force on it. According to Newton’s third law, then   must affect this ‘something’ by the 

force      . But this ‘something’ doesn’t exist! Maybe you could rescue the theory by making 

some more or less reasonable explanations, but this is a bit too strange to seem natural, consid-

ering this chapter is devoted to classical mechanics. 
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1.3 The Fundamental Forces 

According to the standard models of modern physics, there are four fundamental forces in na-

ture, namely, gravitation, electromagnetism, the strong nuclear force, and the weak nuclear 

force. At the end of the seventeenth century, Newton formulated the law of universal gravitation 

that is one of the cornerstones of classical mechanics; it gives the gravitational force   experi-

enced by a body  2 of mass  2    due to another body    of mass      a distance   away. If  ̂ 

is a unit vector pointing from    to  2, then1 

    
   2
 2

 ̂ 

where   is a constant2. (Notice that gravity is an unquestionably attractive force.) Therefore, by 

Newton’s second law of motion, the acceleration of  2 is3 

  
 

 2
    

  
 2
 ̂ 

and is independent of the mass  2. This is known as Galileo’s law: if you drop a feather and an 

iron weight from the same height above the surface of the Earth, then – neglecting all forces be-

sides gravity (predominantly air resistance) – they will stay next to each other during the fall, 

and they will hit the ground simultaneously.4 

Now, consider two electrically charged bodies    [the source of the field] and  2 [the test parti-

cle] with charges      and  2   , respectively. Then Coulomb’s law gives the electrostatic 

force5 

   
   2
 2

 ̂ 

on the test charge  2 due to the source charge   . This force clearly has the exact same form as 

in the case of gravity; instead of the masses of the particles, the force is now proportional to their 

charges. However, notice now that the force is repulsive if           2 [and, of course, neither 

charge is zero]. More importantly, the acceleration of  2 is now 

  
 

 2
   

   2
 2 

2
 ̂ 

and thus it depends crucially on both the mass  2 and the charge  2 of the test body. The strong 

and weak nuclear forces behave more like the electrostatic force than the force of gravity in this 

respect {{kb}}, and we therefore conclude that gravity is a rather special force, since it is propor-
                                                             
1 We often consider    to be a fixed source of the gravitational field, such as a star or a planet, and  2 to be 
a small ‘test particle’ experiencing this field. In this case,    is called the ‘active gravitational mass’, and 
 2 the ‘passive gravitational mass’. Of course, we know that to experimental accuracy, these two quanti-
ties are the same for any object, which is also implied in the law of universal gravitation, since we only 
speak of the ‘mass’. 
2 In SI units,                 2   2. 
3 The mass entering in Newton’s second law is called the ‘inertial mass’. Again, to experimental accuracy, 
the ‘inertial mass’ of body is equal to both its ‘gravitational masses’. Hence, we may simply speak of ‘the 
mass’ of an object. 
4 Even today, you might hear that this is counterintuitive. Personally, I have never quite understood why. 
Indeed, if you take a thousand feathers, arrange them in a simple cubic array of spacing    , and then 
release them at the same time, they will all fall with the feather’s acceleration, irrespective of the precise 
value of  . But as   is decreased, you will eventually obtain the density of an iron weight. Therefore, an 
iron weight has to fall with the same acceleration as a feather. Quod erat demonstrandum. 
5 In SI units,        ⁄              2  2 where     is the Coulomb unit of electric charge. 
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tional in strength to the inertial mass of Newton’s second law. This suggests that there is some-

thing very special about gravity. 
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1.4 Simple Examples of Kinematics 

We will use Newton’s laws to investigate the kinematics of a number of simple examples of phys-

ical systems. 

1.4.1 Two Massive Bodies 

Let   and   be two bodies with masses    and   , initially (at time    ) at rest at (     ) and 

(      ) relative to an inertial frame ℱ  ℱ, where the initial distance     . Due to the force of 

gravity, these will accelerate towards each other, with an ever-increasing acceleration. 

 

Figure 8. Two bodies approaching each other due to the force of gravity. 

Let   ( ) and  2( ) be the distances travelled by   and   at time  , respectively, and let  ( ) be 

the distance between   and   at this time. It follows that, for all times prior to collision, 

  ( ) +  ( ) +  2( )      

Differentiation with respect to time (twice) yields 

 ̈ ( ) +  ̈( ) +  ̈2( )     

But Newton’s second law and the law of gravitation combines to yield 

   ̈ ( )  
    2
 ( )2

  2 ̈2( )  
    2
 ( )2

  

Therefore, 

  2
 ( )2

+  ̈( ) +
   
 ( )2

    

Rearrange the terms to obtain 

 ̈( ) +
 

 ( )2
   

where 

   (  + 2)  

Thus, the problem has the precise mathematical formulation 

   +    2    {
 ( )    
  ( )   

     (     ) 

and it is perfectly sensible to solve it numerically, especially since the solution    ( ) probably 

cannot be expressed in terms of elementary functions. However, one can show that the bodies 

will collide at time              where 

  
 

𝑟(𝑡) 

 

𝑟  

 

𝑑2(𝑡) 

 

𝑑 (𝑡) 

𝑚  𝑚2 𝐴 𝐵 
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 √  
  
 2⁄   

As a concrete example, let     2       and       . Then                 hours. A graph of 

   ( ) for   [            [ is shown below. 

 

Figure 9. Distance between two gravitationally interacting bodies versus time. 

A full exact treatment of the ODE (↑) is given in Appendix A.2. 

1.4.2 Projectile Motion 

Assume that a ball of mass   is thrown with an initial velocity    (       ) by an experi-

mental physicist or a British actor. We neglect air resistance, so the only force acting on the ball 

is the force        ̂ of gravity, where   is the constant acceleration due to gravity, as we will 

discuss in a later section. 

 

Figure 10. The initial velocity of a thrown ball. 
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Put the origin at the physicist/actor, more precisely at the point of the ball as it leaves the hand, 

and denote by  ( )  ( ( )  ( )) the position of the ball at time  . Then Newton’s second law 

reads 

  ̈      

or – explicitly –, 

  ̈    

  ̈       

Thus, the horizontal component  ̇ of the velocity is constant, namely,  ̇( )     . Therefore 

 ( )       

since  ( )   . Now 

  ̈       ̈      ̇          ( )       
 

 
  2   (    

 

 
  ) 

since  ̇( )      and  ( )   .  The ball hits the ground6 when     and  ( )   , that is, when 

          
    

 
  

At this time, the ball has travelled a horizontal distance 

         (       )  
       

 
  

Assume that the angle between the ground ( ̂) and    is   [    ⁄ ] so that 

           

            

Then 

       ( )  
   
2

 
         

  
2

 
       

Clearly, for any given initial speed   , the longest throw (measured horizontally) is obtained by 

directing it 45° above the ground. What is the maximum height of the ball? The maximum of  ( ) 

is clearly obtained when  ̇( )   . From (↑) and (↑), this occurs precisely when 

       
   

 
 
 

 
         

and the maximum height is 

 (    )  
   
2

  
 
  
2    2 

  
  

Not surprisingly, the maximum height is achieved when the throw (initial velocity) is purely 

vertical, i.e., when     ⁄ . Finally, notice that (↑) combined with (↑) yields the path 

 ( )         
 

    
2  

2  

                                                             
6 Strictly speaking, it hits the surface     which is slightly above the ground unless the ball is thrown 
exactly from the ground by the physicist/actor. 



ANDREAS REJBRAND D R A F T  http://english.rejbrand.se 

 27/314 

That is, the path is a parabola; this motivates the Swedish word ‘kastparabel’. 

1.4.3 Circular Motion 

Assume that a particle of mass   is circling the origin of some    plane. What does the force   on 

the particle have to look like? Well, if the radius of the orbit is    , then 

 ( )  (             ) 

for some constant  , the angular frequency of the particle. This implies 

 ̈( )  (   2          2      )    2 ( )  

That is, the acceleration is always directed towards the origin (that is, the centre of the circle) 

and has constant magnitude 

 ̈   2   

Since the angular speed (=angular frequency) of the particle is  , the speed of the particle is 

    . Thus 

 ̈  
 2

 
  

The acceleration of a particle travelling in a circular orbit is called the centripetal acceleration. 

The (net) force on such an object [with mass  ], the centripetal force, therefore has magnitude 

  
  2

 
 

and is always directed towards the centre of the circle. Of course, the physical nature of this 

force can be of any kind, such as gravitational and electromagnetic (e.g., a contact force). 

1.4.4 The Ideal Spring – Simple Harmonic Motion 

Assume that you put an ideal spring of length   (when not stretched) along the   axis with one 

end fixed to the origin     while the other (at    ) is free to move. According to Hooke’s law, 

which defines the ‘ideal spring’, the restoring force of the spring is proportional to the displace-

ment, that is, 

    (   ) ̂ 

where   is the position of the free end and     is the spring constant. Glue an object of mass   

to the free end, and, for simplicity, shift the labelling of the   axis so that the fixed end of the 

spring is at     . Then the object at the free end is at the origin when the spring is relaxed. 

The force on the object is 

     ̂  

and Newton’s second law      reads 

  ̈       

Define 

  √
 

 
 

to obtain 
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 ̈ +  2    

with general solution 

 ( )        +         

If we choose the origin of time in such a way that  ( )   , then this reduces to 

 ( )          

The speed of the object is 

 ̇( )          

and the maximum speed, obtained at the origin, is   . 

1.4.5 The Simple Pendulum 

Consider a pendulum consisting of a ball of mass   attached 

to a string of length   inside a constant gravitational field. Let 

the angle between the vertical and the string be  ( ) at time 

 . The force on the ball due to gravity is        ̂. This 

force can be decomposed into a component           ̂ 

in the direction of the string (that is, orthogonal to the path of 

the ball), and a component            ̂ parallel to the 

path of the ball; see Figure 11. If we consider only small oscil-

lations of the pendulum, say | |    ⁄ , then        is a 

decent approximation, and therefore we set 

        ̂  

This is the net force acting on the ball, because the force from 

the string is exactly the opposite of   . Hence, Newton’s se-

cond law states 

   ̈       

where     ̈ is the acceleration of the ball. Rearranging, we 

end up with 

 ̈ +  2    

where 

  √
 

 
 

and the solution is 

 ( )         

if we choose the origin of time such that  ( )   . Recall that 

this is merely an approximation valid for small oscillations 

(small  ). 

1.4.6 The Catenary 

We end this section with a proof of the fact that the ideal hanging cable or chain forms the graph 

of the hyperbolic cosine. This curve is called the catenary. Consider so a chain of ‘linear density’ 

𝜑 

𝑚 

𝐿 

�̂� 

�̂� 

�̂� 

�̂� 

Figure 11. A simple pendulum 
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  [unit: kg/m] hanging between [the tops of] two vertical poles of equal height, forming the im-

age of a parameterisation function  ( )  ( ( )  ( )), which we also assume to be a graph of a 

function    ( ). Our aim is to find  ( ) and  ( ), and then use these formulae to deduce the 

expression for  ( ) by finding  ( ). As one might guess, the tricky part is to find the parameteri-

sation. Let us first agree on a coordinate system: Let the  ̂ basis vector be parallel with the dis-

placement between the tops of the poles and let  ̂ be parallel with each pole, and with the force 

of gravity. Then put the origin at the point of symmetry of the hanging chain, that is, at its lowest 

point, situated midway between the poles. In addition, we agree to let     here. 

With no loss of generality, we demand that    ( ) be a unit-speed parameterisation (as indi-

cated by the usage of the letter ‘s’  for the parameter). This means simply that the parameter is 

the ‘arc-length parameter’, that is, the arc length of the curve between parameter values    and 

 2     is exactly  2    .7 Then  ̂( )    ( )   ⁄  is the unit tangent vector to the chain at  . 

Consider in particular a small segment of the chain, as shown in Figure 12. The small segment is 

of length    and situated between (   ) and ( +     +   ), corresponding to parameter val-

ues   and  +   , respectively. Let the mass of this segment be       . This segment is at 

rest, and so the net force on it must vanish. The net force is the vector sum of three forces, name-

ly, 

 the force               ̂ of gravity, pointing downwards, 

 the force      ( ) ̂( ) from the preceding (smaller  ) part of the chain, pointing 

‘backwards’ along the chain, and 

 the force  2   ( +   ) ̂( +   ) from the following (greater  ) part of the chain, point-

ing ‘forwards’ along the chain, 

where  ( )    is the tension of the chain at  . The assumptions made implicitly above are well 

motivated. Indeed,  (    2   ), for otherwise the net force       , causing this segment 

of the chain to accelerate. Also, the existence of the map   follows from Newton’s third law. 

 

Figure 12. A small segment of a hanging cable or chain. 

                                                             
7 We will discuss curves in much more detail in the chapter on classical differential geometry. 

𝑔  Δ𝑚 

 

Δ𝑥 

 
Δ𝑦 

(𝑥 𝑦) 

(𝑥 + Δ𝑥  𝑦 + Δ𝑦) 
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Now, the observation 

  +   +  2    

reads 

    ̂    ( ) ̂( ) +  ( +   ) ̂( +   )     

or, equivalently, 

 ( +   ) ̂( +   )   ( ) ̂( )

  
    ̂  

Let      . Then, by the definition of the derivative of a vector-valued function, 

 

  
[ ( ) ̂( )]      ̂ 

yielding 

 ( ) ̂( )  (     +  ) 

for a pair (   )   2 of constants. But since the curve is at its lowest point – and, therefore, is 

horizontal – at    , we have to set     [ ( )    is obvious from the physics of the situation]. 

Using the definition (↑) of the unit tangent vector, (↑) reads 

(
  

  
 
  

  
)  (

 

 ( )
 
   

 ( )
)  

Therefore, 

  

  
 
  

  
 
  

  
 
  

  
 (
  

  
)
  

 
   

 ( )
 
 ( )

 
 
   

 
    

where 

  
  

 
 

is constant. This tells us that the slope of the curve is proportional to the arc length! Unfortu-

nately, we cannot easily integrate (↑) w.r.t.   to obtain the sought expression  ( ), so we have to 

work a bit more. The arc length from the start of the chain to the point (   ) is 

 ( )  ∫   
 

 

 ∫ √ +   (  )2   
 

 

  

whence 

  

  
 √ +   ( )2  

Of course, this applies to any curve    ( ) with arc length  ( ). But in this case, (↑) can be 

used to yield 

  

  
 √ +  2 2  

Therefore, 

  

  
 

 

√ +  2 2
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This can be integrated with respect to  : 

 ( )  
 

 
          

respecting the condition  ( )   . Having found an expression for the first parameterisation 

function    ( ), we turn to the second function parameterising the curve, i.e.,    ( ). This is 

actually rather simple, for 

  

  
 
  

  
 
  

  
 

  

√ +  2 2
 

using (↑) and (↑) and so 

 ( )  
 

 
√ +  2 2  

 

 
 

respecting  ( )   . We have thus found our parameterisation    ( ) – isn’t that exciting! 

Following our recipe, (↑) is solved with respect to  , yielding 

 ( )  
 

 
       

which is inserted into (↑) to yield 

 ( )  
 

 
√ +     2    

 

 
 

 
 

 
(        ) 

using the hyperbolic identity     2       2     and recalling that the hyperbolic cosine is a 

positive function8. What is the meaning of  ? Well, if the [tops of the] poles are positioned at 

(    ), then it is required that 

  
 

 
(        )  

which is an implicit equation for   as a function of   and  . The result that a hanging chain forms 

the graph of the hyperbolic cosine function can be verified ‘numerically’, by trying to fit different 

curves to photographs of actual real-world chains. See Figure 13. 

                                                             
8 Naturally, with foresight, we could have put the origin a distance   ⁄  below the chain’s point of sym-

metry, and then we would have ended up with the slightly cuter formula  ( )  
 

 
      . 
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Figure 13. A hanging chain and a superimposed parabola (blue) and catenary (red). 
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1.5 Momentum and Collisions 

1.5.1 Momentum 

The usefulness of the Newtonian concept of ‘momentum’ – defined as ∑     for an isolated sys-

tem of particles with masses    and velocities    – lies in the fact that the momentum so defined 

is a conserved quantity when computed in any inertial frame. This follows immediately from 

Newton’s laws. For example, let   and   be two billiard balls (or, more generally, particles) in 

empty space, with masses    and    and velocities    and   , respectively. If they do not col-

lide or interact via long-range forces, then the total momentum ∑     is conserved in time, as 

dictated by Newton’s first law. Therefore, let us assume that they do collide or interact via long-

range forces. Then, let    ( ) be the force on   due to  , and let    ( ) be the force on   due to  , 

at time  . Newton’s third law requires    ( )      ( ). Thus, using the second law, we have 

 

  
(    )   

 

  
(    )  

or, equivalently, 

 

  
(    +    )     

That is, total momentum is a constant in time. This argument is readily generalized to     par-

ticles, and to a continuum (   ) of matter; we will do so in the next section. Notice in particu-

lar that, although the momentum of an isolated system is different as seen from different physi-

cal frames, the conservation, or constancy in time, of momentum holds equally well in any iner-

tial frame. For example, let two balls (  and  ) of equal masses   approach each other along the 

  axis of ℱ  , about to collide completely elastically at the origin. Let them have velocities   ̂ and 

   ̂ prior to the collision, and velocities    ̂ and   ̂ after the collision. Now, let ℱ   be a differ-

ent frame in standard configuration relative to ℱ , where the origin of ℱ  has velocity   ̂ rela-

tive to ℱ . As seen from ℱ , the pre-collision velocities are   ̂ and    ̂. The post-collision veloci-

ties are    ̂ and   ̂. Hence, as seen from the point of view of ℱ , the total momentum is 

‘changed’ form   ̂ to   ̂, and from the point of view of ℱ , the total momentum is ‘changed’ from 

    ̂ to     ̂. A third example: Let ℱ  be the pre-collision rest frame of  . In this frame, the 

initial velocities are    ̂ and   ̂, the final velocities are   ̂ and    ̂ and so the momentum 

‘changes’ from     ̂ to     ̂. [Notice that ℱ3 also serves as the post-collision rest frame of  .] 

We will investigate collisions that are (seemingly!) more general after the next section. 

1.5.2 Many-Particle Systems 

Now consider an isolated system of   particles in space and let 

  {       } 

be the set of all particle indices; from now on, we will always refer to this set as the ‘index set’ of 

the system. Assume that the mass of particle   is    and that it is located at   . The total momen-

tum is 

  ∑  
   

 ∑    
   

 

where         is the momentum of the  th particle. Now consider the most general case, in 

which the force on the  th particle due to the  th particle at time   is    ( ). Of course, a particle 
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does not affect itself by any non-zero force, so a priori there are no symbols of the form    ; for 

notational simplicity, however, we define 

   ( )          

 Then Newton’s second law, as applied to particle  , can be written very succinctly 

    ( )  ∑   ( )

   

 

while Newton’s third law ensures that 

   ( )      ( )  (   )   2  

It follows immediately from Newton’s laws that the total momentum   is a constant of motion.9 

Indeed, for every force     that changes the momentum of the  th particle by an amount 
 

  
(    )     , the momentum of the  th particle is changed by an opposite amount 

 

  
(    )          . More formally, 

 

  
  

 

  
∑    
   

 ∑
 

  
(    )

   

 ∑(∑   
   

)

   

 ∑    
(   )   

   

since the vector-valued matrix     is skew. We have thus shown 

Theorem 

The total momentum of an isolated system of discrete material particles is constant in time. 

We now define the centre of mass     as the ‘weighted’ average position with respect to the par-

ticle masses, that is, 

 cm  
 

 
∑    
   

 

where    is the mass of the  th particle and 

  ∑  
   

 

is the total mass of the system. The acceleration of the centre of mass is 

 cm  
 2

  2
(
 

 
∑    
   

)  
 

 

 

  
(∑

 

  
(    )

   

)  
 

 

 

  
(∑    
   

)  
 

 

 

  
    

and therefore we can use the centre of mass as the origin of an inertial frame. This frame (or, 

rather, such a frame) is called the centre of mass frame, or the ‘CM frame’. 

Proposition 

As seen from the CM frame, the total momentum of a system of matter particles is zero. 

                                                             
9 In physical jargon, a ‘constant of motion’ is a quantity that doesn’t change in time. 
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Proof 

Let    be the velocity of the  th particle relative to the ambient reference frame, and let    be the 

velocity of the same particle relative to the CM frame, so that       +   . Then we want to 

show that ∑          . And, indeed, 

∑    
   

 ∑  (      )

   

 ∑    
   

 ∑     
   

 
 

  
∑    
   

    ∑  
   

 

 
 

  
(    )                    

 ∎ 

Proposition 

Let ℱ  be an inertial frame relative to which the centre of mass of a system of matter particles 

moves with velocity    . If the system has total mass  , then, as seen from ℱ , the total momen-

tum of the system is       . 

Proof 

Let    be the velocity of the  th particle relative to ℱ  and    be the velocity of the same particle 

relative to the CM frame, so that       +   . Then, the total momentum of the system as seen 

from ℱ  is 

  ∑  
   

 ∑    
   

 ∑  (   +   )

   

 ∑     
   

+∑    
   

    ∑  
   

      

because   ∑       and ∑           according to Proposition NN. ∎ 

Proposition 

Consider a system of particles with total mass  . Assume that the  th particle is affected by an 

external force    in addition to the internal forces     from the other particles inside the system. 

Then 

∑  
   

      

where     is the acceleration of the centre of mass of the system. 

Proof 

Now Newton’s second law on the  th particle reads 

     ∑   
   

+    

and so, using the definition of the centre of mass     and the fact that     is skew, 

     ∑    
   

 ∑(∑   
   

+   )

   

 ∑    
(   )   

+∑  
   

 ∑  
   

  

 ∎ 
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The main point of the last three propositions is that, a system of material particles can be 

thought of as a single particle of mass   located at     as long as the internal structure of the 

system is not of any interest.  

1.5.3 Momentum Conservation and the Galilean Transformation 

Assume that we have found (either theoretically or empirically) that the total momentum of an 

isolated system is conserved in one inertial frame ℱ  ℱ. It is then natural to ask whether mo-

mentum is seen to be conserved in another inertial frame ℱ  ℱ, as well. The answer is yes, 

because we have seen that the law of momentum conservation follows immediately from New-

ton’s laws of motion, and we have postulated/shown (depending on how you treat the concept 

of ‘force’) that these laws are equally valid in any inertial frame. However, it is instructive to giv-

en an alternative – and far more convincing – proof of this fact without resorting to the compli-

cated matter of the concept of ‘force’. We will do so now. 

Proposition 

Consider a system of   particles with index set  . Let the total momentum be   ∑         as 

seen from an inertial frame ℱ  ℱ and let    ∑     
 

    be the total momentum as seen from 

a different inertial frame ℱ  ℱ. Then 

 

  
    

 

  
      

Proof 

If   and    are the locations of some particle relative to ℱ  and ℱ , respectively, we have 

    +   +   

where   is the (constant) velocity of the origin of ℱ  relative to ℱ  and   is the displacement 

from the origin of ℱ  to the origin of ℱ  at the origin of time. Differentiation yields ( ̇   ) 

    +    

Thus 

 

  
   

 

  
(∑    

 

   

)  
 

  
(∑  (    )

   

)  
 

  
(∑    
   

)  (∑  
  

  
   

)  
 

  
  

since     ⁄    and the proposition follows. ∎ 

1.5.4 General Collisions 

We now return to our discussion of collisions. Let   travel along the   axis of ℱ  ℱ with veloci-

ty   ̂ and let   travel along the   axis with velocity   ̂. Let them approach the origin from minus 

infinity [along the respective axes], and let them collide at the origin. After the collision,   will 

have velocity   ̂ and   will have velocity   ̂. Thus, the momentum is ‘changed’ from    ̂ +    ̂ 

to    ̂ +    ̂. At a first glance, one might think that this collision is fundamentally different 

from the three previous examples. Indeed, the earlier examples were ‘head-on’ collisions, in 

which the velocity vectors were parallel both before and after the collision, whereas the velocity 

vectors are perpendicular in this last example. This, however, is not a (geometric) property of the 

collision, but depends on the frame of reference! To see this, let ℱ  ℱ be the rest frame of  ; 

notice that ℱ  ℱ . The transformation between ℱ  and ℱ  is a Galilean transformation, which 
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is linear, and so even in this frame,   travels along a straight line, still with constant speed. Thus, 

in ℱ ,   is seen to approach the stationary second ball   along a straight line with constant 

speed, and this is a typical example of a ‘head-on’ collision as discussed previously. 

We will now describe an alternative – and perhaps more intuitive – way of seeing this. At any 

pre-collision time  , let  ( ) be the straight line that passes through   and  . Obviously, every 

 ( ) has the normal direction  ̂ +  ̂ and  ( ) is being parallel propagated in this direction as time 

passes. Further, let  ( )   ( ) be the centre of mass of the system (   ) at time  , that is, the 

midpoint of the segment of  ( ) between   and   at this time. It follows that the velocity  ̇( ) of 

this point is parallel to  ̂ +  ̂ and constant in time; also, the speed | ̇( )| is equal to the ‘speed of 

propagation’ of  ( ). Denote this speed by    | ̇( )|. The idea is to introduce a new frame 

ℱ  ℱ the origin of which is  ( ), and the first basis vector  ̂  of which is parallel to  ( ) [this 

direction being independent of time], pointing from   to  . In this frame, the two balls are ap-

proaching each other along the    axis, i.e., the velocities are   ̂  and    ̂ , respectively, for some 

constant     that the reader can easily determine for herself should she feel the need to do so. 

More importantly, this is the typical ‘head-on’ situation. 

Since the components of a vector, such a velocity vector, do not depend on the actual position of 

the origin, we can simplify the recipe used above to obtain a frame ℱ  in which the collision is 

‘head-on’ with velocities   ̂  and    ̂ . Start with the frame ℱ  ℱ, and introduce a new math-

ematical frame ℱ   ℱ, ℱ   ℱ  that is rotated 45° clockwise. Then introduce a new frame 

ℱ  ℱ in standard configuration along the   axis relative to ℱ   with relative speed     . As 

seen from ℱ , the pre-collision velocities are   ̂  and    ̂ . 

We have thus seen that, if two balls of equal mass and speed are found to collide with their ve-

locities perpendicular to each other, there is always another frame in which they collide with 

their velocities parallel. Conversely, if two such balls are found to collide with their velocities 

parallel, we can find a frame in which they collide with their velocities perpendicular to each 

other. All we have to do is to ‘reverse’ the argument given above. Indeed, in ℱ  the collision is 

‘head on’, but if we move the observer to ℱ , the pre-collision velocities are perpendicular to 

each other. 

We will now treat the most general case of a two-particle collision. Let ℱ  ℱ be a frame in 

which   and   are two balls with masses    and    and velocities    and   . The speeds    

and    need not be equal, and the angle between the velocities can be any number, with one 

single restriction: they have to collide with each other at some time in the future (obviously!). 

We will show that there exists an inertial frame ℱ  ℱ in which the pre-collision velocities are  

  ̂  and    ̂  for some    . In fact, we have already found a hint about how to do this: intro-

duce the centre of mass  frame. This is an inertial frame, as shown above, and in this frame, the 

total momentum    of the two balls is zero, that is, 

       
 +    

    

where   
  and   

  are the velocities of the balls as seen from this frame. It follows that 

  
   

  
  
  
                      

    
   

and so this is the sought frame (just pick a basis parallel with   
 ). Perhaps the most important 

morale of the story is  
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Observation N 

The angle between two velocity vectors depends upon the inertial frame of reference. In other 

words, the concept ‘angle between two velocity vectors’ lacks intrinsic meaning. 

When applied to collisions, we first make 

Definition N + 1 

A collision between two free particles is said to be head on iff there exists an inertial frame rela-

tive to which the pre-collision velocity vectors are parallel. 

in order to formulate 

Observation N + 2 

Every collision between two free particles is head on. 

The requirement that the particles be free does not involve any deep insight. It is only there be-

cause, if it were not, we could not as easily talk about the ‘pre-collision velocities’. Indeed, if one 

of the particles is not free, then it is affected by forces, and so its velocity changes in time. Hence, 

there is no single ‘pre-collision velocity’. 

Combining the above results with Proposition NN, we have 

Observation N + 3 

Consider a collision between two free particles. In the CM frame, the pre-collision velocities are 

parallel and opposite, and the velocities change direction at the collision. 
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1.6 Energy 

The concept of ‘energy’ is one of the cornerstones of modern physics, and during the last century 

or so, it has also become of widespread interest in every-day life, although in a less technical 

language. Indeed, the modern society exploits energy sources to such an extent that the entire 

environment of the Earth is endangered. In this section, we will investigate the physical basis of 

the energy concept. 

1.6.1 Work and Kinetic Energy 

The basis of the entire concept of ‘energy’ is 

Definition 

Let a particle have mass   and speed  . The kinetic energy of the particle is defined as 

   
 

 
  2  

At first sight, this looks just like a different measure of the speed of an object, and – indeed – we 

have no a priori reason to believe that this quantity is of any particular interest. The concept 

used to motivate this definition is the concept of work: 

Definition 

Assume that the net force field10 in some region      in space is  ( ) where   (     )   . 

Assume that the particle, which lives inside the region   and is only affected by the force field  , 

follows the curve    . In general,   will not be a straight line. The work done on the particle by 

the force field is defined as the line integral 

  ∫ ( )    
 

  

Kinetic energy and work are very closely related concepts; indeed, the latter is the change in the 

former. More precisely, assume that the particle travels between points   and   in space along a 

curve  , under the influence only of the force field  . Let    
 

2
   

2  and    
 

2
   

2  be the ki-

netic energy at   and  , respectively, where the instantaneous speed of the particle is    and    

(also respectively). Let           be the gain in kinetic energy during the journey (possibly 

zero or negative), and let   be the work done on the particle by the force field. Then we have 

Theorem (The Work—Energy Theorem) 

       

                                                             
10 In this section, a ’force field’   is a vector field in space such that a particular body located at   experi-
ences the force  ( ). In other words, the field depends on the particular body of consideration. For in-
stance, consider the gravitational field from a star. A heavy planet located at some point   would experi-
ence a greater force than a smaller planet located at the very same point  . This means that, in this section, 
when we talk about the ‘force field’ from the star, we mean the field experienced by some pre-chosen test 
body. In later sections, we will employ the more natural definitions of force fields as the fields experienced 
by a particle of unit mass (in the case of a gravitational field) or unit charge (in the case of an electrostatic 
field). In this section, however, it is more illustrative to talk about the force field that is the actual force on 
an actual body. 
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Proof 

Let   be parameterised by        where   [   ] is the unit interval; consequently,  ( )    

and  ( )   . Then 

  ∫ ( )    
 

 ∫  ( ( ))   ̇( )  
 

 

 ∫   ̈( )   ̇( )  
 

 

   ∫
 

  
(
 

 
 ̇( )2)  

 

 

 

 
 

 
 (  

2    
2)      

where we took the liberty of using Newton’s second law. ∎ 

Corollary 

Let a particle travel along a curve   in a (net) force field   such that  ( ) is orthogonal to   at 

every point    . Then the work     and so the kinetic energy of the particle remains con-

stant during the journey along  . 

1.6.2 Conservative Forces 

Many force fields of physical interest, such that the force fields of gravity and electrostatics, are 

conservative; a vector field   is said to be ‘conservative’ in a domain   iff there exists a scalar 

field   such that 

 ( )     ( )       

The scalar field   is called the ‘potential’ of the vector field, and is determined by   up to an ad-

ditive constant.11 A conservative force field has the interesting property that the line integral 

between two points   and   is independent of the actual path   we integrate along, as long as – 

of course – the path starts at   and ends at  . In fact, the line integral of   along any path   start-

ing at   and ending at   is equal to the negative12 of the potential difference  ( )   ( ), that 

is, 

   ( ( )   ( ))  

Path independence clearly implies that the curve integral along any closed curve   vanishes, 

since      ( )   ( )   . The converse is also true, as is easily deduced. Moreover, path 

independence between every pair of points implies that the field is conservative. We also notice 

that the vector identity   (  )    implies that every conservative vector field is irrotational; 

the converse is only true if the domain is simply connected, however. 

The gravitational field and the electrostatic field are both conservative. This means, for instance, 

that the speed (or, equivalently, kinetic energy) of a planet orbiting a star in a closed elliptic or-

bit is the same each time the planet occupies the same point in the orbit. More generally, consid-

er any body in the vicinity of a star, and assume that it is only affected by the gravitational field 

from the star. If we know the speed of the body at some point, we can deduce its speed at any 

                                                             
11 In pure mathematical texts the potential is often defined by  ( )    ( ) instead, without the minus 
sign, and a vector field is said to be conservative if it has a potential   such that  ( )    ( ). Although 
this definition yields another set of admissible potentials, the definitions of ‘conservative’ agree. Indeed, 
      ( )     ( )    2  ( )     2( ); for example, you can always choose   ( )    2( ). 
12 With the mathematician’s convention  ( )    ( ) we would have been relieved from the minus sign. 
That is, we would have ∫  ( )    

 
   ( )   ( ) where  ( )    ( ). In the one-dimensional case (by 

which I mean on  ), this reduces to ∫  ( )  
 

 
  ( )   ( ) where  ( )  

 

  
 ( ) [after trivial identifi-

cation of real numbers and vectors in   ]. Looks familiar? 
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other point. In fact, since the potential only depends on the radial distance from the star to the 

body, it suffices to know the radial distances at both instances. 

Now, let us return to the planet orbiting the star in an elliptic orbit. We found that the speed (or, 

equivalently, kinetic energy) is the same every time the planet visits the same point in the orbit. 

Let   be a point in the orbit with kinetic energy   , and let   be a point with kinetic energy   . 

Let   be the part of the elliptic orbit between   (start) and   (end), and let   be the work done 

on the body as it travels from   to   along  . Then              ( ( )   ( )). If 

   , kinetic energy is lost (     ) during the journey from   to  . This is clearly equivalent 

to  ( )   ( ), that is, the potential is higher at  . On the other hand, if    , the particle has 

gained kinetic energy (     ), which is equivalent to  ( )   ( ), that is, the potential is 

lower at  . A high potential can thus be seen, loosely speaking, as a ‘promise’ that the force field 

can give the planet some additional kinetic energy; in slightly other words, a high potential 

means that there is a high ‘potential’ for the kinetic energy to grow13. Notice in particular that 

the quantity 

  +   
 

 
  2 +  ( ) 

is a constant during the motion, where   is the current position of the planet. Indeed, fix some 

point   in the orbit. At this point, the kinetic energy is    and the potential is  ( ). Let   be any 

later point in the orbit. Here the kinetic energy is    and the potential is  ( ). But 

            ( ( )   ( ))    +  ( )    +  ( ) 

which proves the statement. If a particle is located at a point  , then 

   ( ) 

is called the potential energy of the particle. The sum 

     +  

of the kinetic and potential energy of a particle (at some point  ) is called the total mechanical 

energy of the particle. We have thus shown that the total mechanical energy is constant in any 

conservative force field. 

1.6.3 Examples of Force Fields 

1.6.3.1 The Gravitational Field 

As introduced above, Newton’s law of universal gravitation gives the force of gravity on a mas-

sive body  , the test particle (mass   ) due to another massive body  , the source of the field 

(mass   ) as 

    
    
 2

 ̂  

Choose a spherical coordinate system such that the source   of the field is located at the origin. 

Then  , the distance from   to  , is equal to the radial coordinate of  , and  ̂ is the radial unit 

vector at  . Since the force is proportional to the mass of the second body, it is convenient to 

define the gravitational (force) field due to the source   as the force experienced by a unit-mass 

test particle. That is, we define the gravitational field to be 

                                                             
13 This is the reason why, in physics, we define the potential of a vector field with the minus sign. 
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 ( )    
  
 2
 ̂  

which now is a property only of the source. Now, any massive body   with mass    at   is af-

fected by the force 

     ( )  

The gravitational potential scalar field   is defined by  ( )     ( ). In polar coordinates, 

 (     )    
  
 
  

Therefore, the potential energy of a test body   with mass    located at   is 

     ( )  

1.6.3.2 The Gravitational Field at the Surface of the Earth 

Locally14 at the surface of the Earth, the distance   between the Earth’s centre of mass and a test 

body is virtually constant, as is the direction  ̂. Thus, we define 

  
  

 2
  

where   is the mass of the Earth, to obtain the excellent approximation 

 ( )     ̂ 

(independent of  ) where  ̂ is a unit vector pointing along the   axis, which we choose to be di-

rected upwards from the ground. Let   be a body with mass  . The force of gravity on   is thus 

         ̂  

The magnitude      is a familiar expression to everyone. The minus sign simply tells us that 

the force is directed towards the ground. The potential is 

 ( )     

because    ( )     ̂   . Thus, the potential energy of   is 

       

Since the potential is determined by the force field only up to an additive constant, clearly we 

can choose the origin of   arbitrarily. Indeed, only differences in potential energy ever determine 

a change in kinetic energy. 

Example N 

At the ground of the Earth, 

        ⁄       2⁄   

Choose the zero of the   axis to be at the ground; thus, the potential energy is zero here. Then, at 

a height          , a body of mass          has potential energy           . Let the 

body be at rest, so its kinetic energy is       . Hence, the total mechanical energy      +

      . Then let go of it. During the fall, potential energy will be ‘converted’ into kinetic energy. 

At the time the body hits the ground, the potential energy is       so the kinetic energy is  

                                                             
14 In a room in a building, say. 
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But since    
 

2
  2 we can easily solve for the speed of impact: 

  √    ⁄  √         ⁄   

[Compare this equation with Eq NN obtained from pure kinematic results in Section 1.4.2.] Using 

other words, during the fall gravity does work on the ball. The work is 

        ( ( )   ( ))       

That is, the kinetic energy increases from     by an amount    . 

Notice once again that the mass of an object does not influence its motion in a gravitational field. 

In fact, a body of mass   is affected by the force     , so that Newton’s second law reads 

       

Since the passive gravitational mass   in the RHS is equal to the inertial mass   in the LHS, 

these cancel, producing 

     

That is,   is the acceleration of any massive body in free fall near the Earth’s surface. 

For future reference, we give 

Proposition 

Consider a system of   massive particles in a constant gravitational field. Then the gravitational 

potential energy of the system is equal to the potential energy of a single particle of the same 

mass as the entire system located at the centre of mass of the system. 

Proof 

Let there be   particles with ‘index set’  . Let the mass and position of the  th particle be    and 

  , respectively. Assume the force field is  ( )     ̂ for some    . Then the total potential 

energy is 

  ∑  
   

 ∑     
   

  ∑    
   

  

On the other hand, a particle of mass 

  ∑  
   

 

located at 

  
 

 
∑    
   

 

has potential energy 
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 ̃    [
 

 
(∑    
   

)   ̂]   ∑  (    ̂)

   

  ∑    
   

  

thus    ̃. ∎ 

1.6.3.3 The Electrostatic Field 

Similarly, let there be a charged body   with charge    at the origin. The electrostatic field due to 

  is the force per unit charge of a test particle, that is, 

 ( )  
 

    

  
 2
 ̂ 

so that a force on a body   with charge    located at   is 

     ( )  

The electrostatic potential is 

   ( )  
 

    

  
 

 

and the potential energy of   at   is 

     ( )  

Example N + 1 

Let the two planes     and     have uniform charge density    [unit:   2⁄ ],     being 

positively charged and     being negatively charged. It is then straightforward to show that 

the electric field is 

 ( )  
 

  
 ̂ 

for all   ]   [. Thus, the field is constant, just as the local gravitational field at the surface of 

the Earth. The potential is therefore linear here as well: 

 ( )   
 

  
   

Let there be a proton of charge     that is momentarily at rest at    . It has potential energy 

    ( )      and experiences the force     ( )  
  

  
 ̂. When it reaches the plane    , 

its potential energy has dropped to     ( )   
  

  
, and so its kinetic energy has increased to 

   
 

2
  2  

  

  
. Solving for   yields 

  √      ⁄   

The final speed thus depends on both the charge and inertial mass of the proton. 
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1.6.3.4 The Graph of a One-Dimensional Potential 

Consider a one-dimensional potential energy function    ( ), like the one drawn below. 

 

Figure 14. A one-dimensional potential energy function. 

The force on a particle with this potential energy function is 

 ( )     ( )   
  

  
 ̂  

Since this is merely a one-dimensional problem, it is rather silly to employ vectorial notation. 

Indeed, each vector has only one component, and so it is better to work with this scalar compo-

nent alone. Thus, we write 

 ( )     ( ) 

where a prime denotes a derivative with respect to  . Notice that, at a stationary point like  ,  , 

 , and  ,   ( )    and so  ( )   . At a point with positive slope   ( )   , the force  ( )    

acts to the left, and at a point with a negative slope   ( )   , the force  ( )    acts to the 

right. That is, qualitatively, the particle behaves as a ball on a hill (on the Earth) shaped like the 

potential, always trying to roll downwards! Local minima of the potential, such as   and   are 

stable equilibria, whereas local maxima, such as   and  , are unstable equilibria. Indeed, a ball at 

rest at   or   will remain there even if you hit it with small forces every now and then, which 
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does not apply to a ball at rest at   or  , in which case even a minor disturbance will make the 

ball move away from the instable equilibrium. 

1.6.3.5 The Rollercoaster 

Let’s take this analogy one step further. As a model rollercoaster, let the track be two-

dimensional, restricted to    , say; that is, let the track be the image of some interval [   ] 

under the map   (   ( )  ) for some continuous ‘height function’    ( ). The track might 

look like this: 

 

Figure 15. A rollercoaster. 

Let the rollercoaster car have mass  , and assume that it performs no propulsion of its own (no 

motor); the only force making it move is the force of gravity. We want only to take into account 

the force of gravity, that is, essentially, we want to neglect the forces on the car, due to the track. 

Of course, we cannot just set these forces to zero, because then the car would fall right through 

the track, and we would not be investigating a rollercoaster at all; instead, we would be investi-

gating a (deadly) ‘drop tower’ attraction. But we will still be able to neglect the forces. To see 

this, notice that, at any time, we can decompose the force        from the track into a part    par-

allel to the track and a part    orthogonal to the track, so that          +   . The parallel force 

   is the force of friction, which always acts in the direction opposite of the velocity, trying to 

slow down the car. This can be made very small, and we will simply assume it is zero. On the 

other hand, the force    is what is keeping the car to the track. This we cannot assume to be zero, 

but since it is always perpendicular to the velocity, it does no work, and so we can neglect it too 

when discussing the kinetic energy of the car. Consequently, the only force affecting the speed of 

the car is the force of gravity. The gravitational potential energy is 

 ( )     ( )  

since the car necessarily is at height  ( ) at  . Now, since the only force that is doing work on 

the car is the force of gravity, which is a conservative force, the total mechanical energy    is 

constant. Thus the kinetic energy of the car is   ( )  
 

2
  2      ( )        ( ) when 

the car is at  . That is, the speed   is only a function of  ( ). The tangential force on the car is 

              ̂ 

where  ̂ is the unit tangent vector. In particular, a point on the track where the tangent is hori-

zontal, such as at   or  , the tangential force 

𝑄 

𝑃 
𝑅 

𝑆 

�̂� 

�̂� 
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Figure 1. The spring potential. 

              ̂       ̂   
  

  
      ( )     

That is, if the car is placed at rest at   or  , it will remain at rest there. 

1.6.3.6 The Ideal Spring 

Let us return to the ideal spring. The force on the object attached to the free end of the spring is 

      ̂  

Apparently, we can forget about the spring and just think of the situation as a force field 

 ( )      ̂ that affects the object. The potential energy is 

 ( )  
 

 
  2  

Suppose that the spring is stretched so that the object is at rest at    ̃   . Then the total me-

chanical energy of the object is      +  ( ̃)   +
 

2
  ̃2. Then we let go of the spring. When 

the object flies past the origin, where the potential energy is zero, it has the maximum kinetic 

energy    
 

2
  2      ( )  

 

2
  ̃2 and maximum speed   √  ̃2  ⁄  √  ⁄  ̃. Compare 

with the result obtained from pure kinematics in Section 1.4.4. 

The potential (↑) is drawn to the right (   ). The 

main importance of the ideal spring potential is 

perhaps not that engineers and scientists use ideal 

springs in a literal sense every day (although that is 

an important application of the potential). Rather, 

the ideal spring potential appears very often in 

physics and engineering, because it is a very ‘gener-

ic’ potential. Indeed, consider any analytic potential 

function   in one dimension. Assume that it has 

local minimum at some point; this point is naturally 

a very interesting point, since it represents a stable 

equilibrium. Choose the   axis in such a way that 

this local minimum occurs at the origin. Then 

 ( )   ( ) +   ( ) +
 

 
   ( ) 2 +   

Since the potential is only defined up to an additive constant, we may set  ( )   . In addition, 

since the origin is a stationary point,   ( )   . Neglecting third-order and higher terms, we 

thus end up with 

 ( ) 
 

 
  2 

near the origin, where the constant      ( ). That is, the ideal spring potential approximates 

essentially any local minimum of a generic potential! In addition, since the ideal spring potential 

has sines and cosines as the kinematic solutions, this also explains why sines and cosines are so 

abundant in physics. 
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1.6.3.7 The Centripetal Force 

In Section 1.4.3 we found that if a particle is moving with constant speed in a circle (in some 

plane), then the net force on the particle has to point towards the centre of the circle, and it has 

to be of magnitude   2  ⁄  where   is the mass of the particle,   is its speed, and   is the radius 

of the circle. We now ‘understand’ that the speed of the particle is a constant of motion because 

the force does no work on it, since it is always orthogonal to the velocity of the particle. 

1.6.4 Other Types of Energy 

So far we have encountered two ‘types’ of energy: kinetic energy and potential energy. The latter 

category is made up of a large number of subcategories. Indeed, to every kind of conservative 

force, there is a kind of potential energy, because any such force can do work and by means of 

this increase the kinetic energy of a particle affected by the force, and so there is ‘potential’ en-

ergy, and since the field is conservative, the potential energy is a well-defined function of the 

spatial variable. We have already encountered gravitational potential energy, electrostatic po-

tential energy, and the potential energy associated with an ideal spring. We also found that the 

‘total’ energy – defined as the sum of kinetic and potential energy – was always conserved. In 

this section, we will discuss other forms of energy, and conclude that the total energy is always 

conserved. 

 Thermal Energy is the kinetic energy associated with the internal microscopic 

random (that is, ‘thermal’) motion in a solid, liquid, or gaseous object. The simplest 

case is that of an ideal gas, that is, a gas where the gas particles do not affect each 

other by forces other than at perfectly elastic collisions and have no internal de-

grees of freedom (for instance, they do not rotate). In this case, the average kinetic 

energy 
 

2
  2 of a gas particle is related to the temperature   of the gas according 

to 
 

2
  2  

 

2
    where    is Boltzmann’s constant.15 

 Electromagnetic Energy is the energy associated with an electromagnetic field. 

Really, there is nothing fundamentally new going on here, since the electromagnet-

ic field is a couple of force fields, and as such, contains potential energy. The new 

thing is that, contrary to the simple electrostatic field and the (classical) gravita-

tional field, this field can propagate as a wave in space, and hence energy is al-

lowed to move from one point to another as electromagnetic radiation. 

We have considered conservative forces in quite some detail. Non-conservative forces are forces 

that make an object lose total mechanical energy. Energy, however, is not lost. Instead, it appears 

in other forms, such as thermal or electromagnetic energy. Consider a ball released from a height 

    above the ground. In a highly idealised situation, it will bounce and come back to the initial 

height   ad infinitum; that is, kinetic energy and potential energy will be converted to and from 

each other – the kinetic energy being zero at the top and the potential energy being zero at the 

ground – while the total mechanical energy remains constant. 

In a real situation, however, the ball will hit the ground, and it will lose mechanical energy. It 

might bounce and reach some new height     , and then bounce again up to some height 

 2     and so on, until it finally is lying at rest on the ground. At each impact, it loses mechani-

cal energy. Such an event probably will increase the thermal energy of the ball and the ground at 

the point of impact. In addition, dust particles on the ground hit by the ball might be given kinet-

                                                             
15 This result follows remarkably easily from a statistical physics approach to thermal physics. 
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ic energy and ‘fly away’. Eventually, those particles will also come to rest, and in the final situa-

tion, essentially all mechanical energy has been converted into thermal energy. Still, the total 

energy contained inside the lab (if property isolated) will remain constant. This, basically, fol-

lows since every microscopic force of interaction, between every pair of atoms and/or molecules 

in the system, is conservative. 

Another typical example is a block (with no propulsion of its own) sliding on a horizontal track. 

Due to friction from the surface, (again, this is a macroscopic manifestation of an intricate col-

laboration between a huge number of microscopic forces of electromagnetic nature), it will 

eventually come to a stop, if you do not push it constantly. Hence, mechanical energy is lost, and 

the track and block will be heated. On the other hand, if you push it with an appropriate constant 

force, it will eventually reach a state of constant speed, where the friction vector is the exact op-

posite of the force you supply. 

1.6.5 Many-Particle Systems: Decomposition of Kinetic Energy 

We will now investigate how the kinetic energy of a system of particles differs between different 

frames of reference. To this end, consider a system of   particles with ‘index set’  . Let    be the 

mass of the  th particle, and let    be its velocity relative to a frame ℱ . In this frame, the kinetic 

energy of the  th particle is 

   
 

 
    

2 

and so the total kinetic energy of the system is 

  ∑  
   

 ∑
 

 
    

2

   

  

Let ℱ  ℱ be the CM frame of the system, the origin of which has coordinates  ( ) relative to 

ℱ  at time  . Let   
  be the position vector of the  th particle relative to ℱ , so that   ( )   ( ) +

  
 ( ). Then the total kinetic energy of the system, as seen from ℱ , is 

  ∑
 

 
    

2

   

 ∑
 

 
  |  |

2

   

 ∑
 

 
  | ̇ +   

 |
2

   

 ∑
 

 
  ( ̇ +   

 )
2

   

 

 ∑
 

 
  ( ̇

2 +   ̇    
 +   

 2)

   

 ∑
 

 
   ̇

2

   

+∑
 

 
  (  ̇    

 )

   

+∑
 

 
    

 2

   

  

The middle term vanishes, for 

∑
 

 
  (  ̇    

 )

   

  ̇  ∑    
 

   

  ̇  ∑  
 

   

  ̇      ̇      

because the momentum is zero as measured in the centre of mass frame. The first term, on the 

other hand, is simply 

∑
 

 
   ̇

2

   

 
 

 
  ̇2 

where   ∑       is the total mass of the system. Hence, 

  
 

 
  ̇2 +∑

 

 
    

 2
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Notice that    ∑
 

2
    

 2
    is the kinetic energy as measured in ℱ , the centre of mass frame 

of the system. This is the intrinsic kinetic energy of the system. [Notice that      if ℱ  ℱ , 

that is, if  ̇   .] On the other hand, 
 

2
  ̇2 is the kinetic energy of a particle of mass   moving 

with speed  ̇. This is the extrinsic kinetic energy of the system, that is, the kinetic energy of the 

system when it is considered as a point particle of mass   located at its centre of mass. 

Exercise: We have shown that the total kinetic energy of a system of particles, as 

seen from some inertial frame, can be written as the sum of the kinetic energy of 

the system treated as a point particle plus the ‘intrinsic’ kinetic energy of the sys-

tem, that is, the kinetic energy as seen from the CM of the system. In the section 

about momentum, we also treated multi-particle systems and different frames of 

reference, but we gave no similar decomposition explicitly. Why? 
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1.7 Rotational Motion 

We will review the main results regarding rotational motion. 

1.7.1 Moment of Inertia, or ‘Rotational Mass’ 

Consider a system of   particles that are all rotating about the   axis with the same angular ve-

locity     ̂ and have zero velocity in the  ̂ direction. In the continuous limit    , this be-

comes a model of a rigid body rotating about the   axis. As usual, let   {       } be the set of 

particle indices and let   ( )  (  ( )   ( )   ) be the position of the  th particle, which has mass 

  , at time  . Let    √  
2 +   

2 be the radial distance from the   axis to the particle. Then the 

speed of the particle is        and its kinetic energy becomes 

   
 

 
    

2  
 

 
  (   )

2  

Consequently, the total kinetic energy of the system is 

   ∑  
   

 ∑
 

 
  (   )

2

   

 
 

 
  2 

where 

  ∑    
2

   

 

is the moment of inertia of the system [relative to the   axis]. The continuous case is now obvious: 

For a rigid body occupying a volume     , the moment of inertia relative to the   axis is 

  ∭ ( )2 ( )  
 

 

where  ( ) is the density at    . The kinetic energy of this body, due to its rotation about the   

axis, is 

   
 

 
  2 

where   is the angular speed of the body. Notice that the moment of inertia plays the same role 

when it comes to rotational motion as the (inertial) mass does when it comes to translational 

motion. And just like mass, the moment of inertia is an additive property; that is, if the rigid body 

consists of two disjoint parts,   and  , and these parts have moments    and   , then the moment 

of inertia   of the entire body is     +   . Indeed, if the volumes occupied by these two com-

ponents are    and   , then         and         so that 

  ∭ ( ) ( )2  
 

 ∭  ( ) ( )2  
  

+∭  ( ) ( )2  
  

   +     

Be sure to notice that the moment of inertia is not an intrinsic property of a rigid body. Instead, 

it is a property of a rigid body and a chosen axis of rotation. 

Behold the beauty of the theory: 

Linear motion:      
 

 
   2 
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Rotational motion:      
 

 
   2 

 
Kinetic energy  (Half) inertia;  re-

sistance against a 
change of motion 

Kinematic meas-
ure of motion 

(squared) 

1.7.1.1 Examples 

CYLINDER: Let us compute the moment of inertia of a homogeneous cylinder      with radi-

us   and height   with respect to its axis of symmetry. By definition, 

  ∭ ( )2  
 

 ∭ ( )2   
 

  

Introduce cylindrical coordinates (     ). In    -space the region   corresponds to 

  [   ]  [    [  [   ] (say),           , and  (     )    so that 

  ∭    
 

       ∫     
 

 

∫   
2 

 

∫   
 

 

   
 

 
        

 

 
     

 

 
  2 

where      2   is the total mass of the body. 

BALL: A ball      of radius   centred at the origin with respect to the   axis. Introduce spher-

ical coordinates (     ). The set   in    -space corresponds to the set   [   ]  [   ]  

[    [ in    -space, and     2           . Now the radial distance 

 (     )        

and so 

  ∭ ( )2  
 

 ∭ ( )2   
 

 ∭              
 

  ∫     
 

 

∫        
 

 

∫   
2 

 

 

   
 

 
   

 

 
    

  

  
    

 

 
  2 

where     
 

 
    is the mass of the ball. 

1.7.2 Angular Momentum 

Let ℱ  ℱ be a frame of reference, and let   be a particle with mass  , position   and velocity  . 

The quantity 

           

is called the angular momentum of the particle, where   is the (linear) momentum of the particle. 

For a system of particles, the angular momentum is defined as the sum of the angular momenta 

of the individual particles. In our usual notation, we write 

  ∑  
   

 

where   is the total angular momentum of a system of   particles with ‘index set’  , in which the 

angular momentum of the  th particle is   . The analogous definition in the continuous case is 

obvious. 

Now we restrict our attention to a very important special case, namely, the case of a rigid body 

rotating about one of its axes of symmetry. To make this precise, we define 
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Definition 

Let    be the linear map 

   (
 
 
 
)  (

          
         
   

)(
 
 
 
)  

that is, a rotation   radians about the   axis (in the positive sense). If      then we denote the 

image of   under a linear map   by  ( ), that is, 

 ( )  {        ( )    }  

Consider a rigid body   occupying a volume     . Let  ( ) be the density of   at    . The 

rigid body   is symmetric about the   axis iff 

  ( )         

and 

 (  ( ))   ( )  (   )       

Consider a rigid body   that is symmetric about the   axis. The total angular momentum is 

  ∭( ( )   ( )) ( )  
 

  

A general point    on the body is shown below, together with the direction of the cross product 

   , where the velocity vector   is pointing into the page. 

 

Figure 16. The cross product    . 

Since the body is symmetric about the   axis, the projection onto the   -plane of the integral 

(which is a vector) must vanish. Hence, it will suffice to compute only the   component of the 

integral, which is given by the integral of the projection of the integrand to the   axis; in symbols, 

  (∭([ ( )   ( )]   ̂) ( )  
 

)  ̂  

�̂� 
𝐫 

𝐯 

𝐱 

𝐫  𝐯 

𝜃 

𝑑 

𝑂 
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Now 

| ( )   ( )|  | ( )|| ( )| 

since  ( )   ( ). Furthermore, 

  | ( )|     

where   is the angular speed, and the radial distance between the   axis and   is 

         

Consequently, 

| ( )   ( )|  | ( )|| ( )|       2       

whence16, 

[ ( )   ( )]   ̂   2            2    2    

Thus, 

  (∭ 2    2   ( )  
 

)  ̂  (∭ 2    2   ( )  
 

)  ̂  (∭ ( )2 ( )  
 

)      

That is, we have found 

Proposition 

Let   be a rigid body that is symmetric and rotating about the   axis, and denote its moment of 

inertia and angular velocity by   and  , respectively. Then the angular momentum of    is 

      

Behold the beauty of the theory: 

Linear motion:         

Rotational motion:         

(symmetric case only) Dynamic measure of 
motion 

 Inertia; resistance 
against a change of 

motion 

Kinematic meas-
ure of motion 

However, this time the symmetry is not perfect. Indeed, the equation      only holds for a 

rigid body that is symmetric about the axis about which it is rotating. 

1.7.3 Torque 

Let   be a particle with mass   located at  , and let   be the net force on the particle. The quanti-

ty 

      

is called the torque on the particle. The torque on a system of particles is defined as the sum of 

the torques of the individual particles, that is, 

  ∑  
   

  

                                                             
16 Or  2    2        (

 

2
  ) if you prefer to think of the scalar product that way. 
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We have 

Proposition 

Consider a system of   particles, and denote the angular momentum and the torque on the sys-

tem by   and  , respectively. Then 

  
  

  
  

which could also serve as the definition of ‘torque’. 

Proof 

  

  
 
 

  
(∑      
   

)  ∑
 

  
(      )

   

 ∑(      +       )

   

 ∑     
   

    

 ∎ 

Just as force is the rate of change of (linear) momentum, torque is the rate of change of angular 

momentum. If we are dealing with a rigid body symmetric and rotating about the   axis, then we 

also have 

  
  

  
    

where       ⁄  is the angular acceleration. That is, we have a rotational analogue of New-

ton’s second law! 

 

Linear motion:         

Rotational motion:         

(symmetric case only) ‘Force’  Inertia Acceleration 

1.7.4 Conservation of Angular Momentum 

We have seen that, in any isolated system, the total (linear) momentum is a constant of motion. 

We will now see that the same thing applies to the total angular momentum of such a system, 

but in order to prove this, we will find it necessary to use a slightly stronger version of Newton’s 

third law. 

Consider an isolated system of   particles in which the force on the  th particle due to the  th 

particle, is    , and define       as usual. Since the system is isolated, there are no other forces 

affecting the particle. Thus the total force on the  th particle is 

   ∑   
   

 

and so the torque on this particle is 

            ∑   
   

  

Therefore, the rate of change of the total angular momentum is 
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 ∑  
   

 ∑(   ∑   
   

)

   

 ∑       
(   )   

 ∑(∑(      +       )

   

)

   

 

 ∑(∑(             )

   

)

   

 ∑(∑(     )     
   

)

   

  

Now, we have to introduce 

Hypothesis (The Strong Newton’s Third Law) 

Let   and   be two particles located at    and   , respectively. If   is affecting   with force    , 

then   is affecting   with the force          and     (and    ) is parallel with the displace-

ment      . 

In fact, when one imagines Newton’s third law (for instance, using a picture as in Figure 7), one 

does usually assume the parallelism between the force vectors and the displacement vector. In 

addition, most forces we know of satisfy the strong version of the law (Newton’s law of universal 

gravitation, Coulomb’s law, etc.). Using this strong form, it is obvious that 

(     )         (   )   2  

Thus 

  

  
   

and we have shown 

Theorem 

Assuming the strong form of Newton’s third law, the total angular momentum of an isolated sys-

tem of discrete particles is constant in time. 

1.7.5 Decomposition of Angular Momentum 

Consider any system of particles, and let ℱ  be a frame relative to which the centre of mass is 

located at  ( ) at time  . Let    be the position of the  th particle, with mass   , relative to ℱ , 

and let   
  be the position relative to the centre of mass. Then 

  ( )   ( ) +   
 ( ) 

where 

 ( )  
 

 
∑    
   

  

Relative to ℱ  the total angular momentum is 

  ∑       
   

 ∑( ( ) +   
 ( ))    ( ̇( ) +   

 ( ))

   

 

 ∑ ( )     ̇( )

   

+∑ ( )      
 ( )

   

+∑  
 ( )     ̇( )

   

+

+∑  
 ( )      

 ( )
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The two middle terms vanish. Indeed, 

∑ ( )      
 ( )

   

  ( )  ∑    
 ( )

   

  ( )    ( )   ( )      

since the total momentum    is zero as seen from the centre of mass frame (Proposition NN), 

and 

∑  
 ( )     ̇( )

   

 (∑    
 ( )

   

)   ̇( )     ̇( )    

because (
 

 
)∑     

 ( )    are the coordinates of the centre of mass expressed in the CM frame. 

Thus, 

  ∑ ( )     ̇( )

   

+∑  
 ( )      

 ( )

   

     ̇ +∑  
 ( )      

 ( )

   

  

that is, the total angular momentum is decomposed into two parts: the total angular momentum 

    ̇ of the system as a whole [considered as a point particle of mass   at its centre of mass 

 ] and the total angular momentum ∑   
 ( )      

 ( )    due to the internal structure of the sys-

tem. If ℱ   ℱ , where ℱ  is the CM frame, then  ̇    and 

  ∑  
 ( )      

 ( )

   

     

that is, the quantity ∑   
 ( )      

 ( )    is really the intrinsic angular momentum of the system 

in the sense that it is the angular momentum one would measure in the rest frame of the centre 

of mass of the system. In any other frame, one obtains the total angular momentum by adding 

the extrinsic angular momentum     ̇ to the intrinsic angular momentum, which is due to the 

motion of the centre of mass, that is, to the motion of the system considered as a particle without 

internal structure. 

For instance, consider a planet orbiting a star. The total angular momentum of the planet is then 

        +       

where             ̇ is the angular momentum due to the orbit about the star, and 

      ∑   
 ( )      

 ( )    is the angular momentum due to the planet’s spin about its own 

axis. 

Notice that, in the special case of a rigid body spinning about a symmetry axis,  

      ̇ +    

where   is the moment of inertia (about the symmetry axis) and   is the angular velocity of the 

spin. 

1.7.6 Decomposition of the Kinetic Energy 

We will use the same setup as in the last section, but instead of analysing the angular momen-

tum, we will investigate the kinetic energy. To this end, we can employ the results obtained in 

Section 1.6.5. Hence, let ℱ  ℱ be the centre of mass frame of the system, in which the kinetic 

energy is          . This is the energy associated with the motion inside the system. In particular, 

this contains any kinetic energy caused by spin. Let ℱ  ℱ be any inertial frame, relative to 

which ℱ  is moving with speed  . If   is the total mass of the system, then 
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  2 +           

is the total kinetic energy of the system as seen from ℱ . In particular, if the system is a rigid 

body rotating about a symmetry axis, then 

   
 

 
  2 +

 

 
  2 

where   is the moment of inertia and   is the angular speed. For example, the body could be a 

planet orbiting the sun. Then 
 

2
  2 is the kinetic energy of the planet – considered as a point 

particle – due to its motion about the sun, whereas 
 

2
  2 is the ‘internal’ kinetic energy of the 

planet, due to its rotation about its own axis. 

1.7.7 Example: A Rolling Stone 

Consider a ball-shaped stone of radius   and mass   that is rolling (without slipping) down a 

hill. Of course, we will not ignore friction, because this is what makes the stone roll. However, 

due to the rolling, the lost mechanic energy is very small. In fact, we will assume that no mechan-

ic energy is lost at all. Let the hill be of height   and inclination  , as indicated in Figure 17. 

 

Figure 17. A ball rolling down an inclined hill. 

According to Proposition NN, the gravitational potential energy of the ball is the same as the 

gravitational potential energy of a point particle of the same mass located at the ball’s centre of 

mass. This potential energy is simply     at height  . The difference in potential energy be-

tween the top and the bottom of the hill is thus      ; since we assume that the ball is at rest 

at the top of the hill, this is the total mechanical energy of the system. 

At the bottom of the hill, the total mechanical energy     is divided into translational and rota-

tional kinetic energy in an additive fashion according to the last section. That is, 

    
 

 
  2 +

 

 
  2 

where   is the (final) translational speed of the ball,   is its (final) rotational angular speed, and 

the moment of inertia 

  
 

 
  2 

 

 
𝛼 
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according to the Examples above. At first sight, it might look like   and   are two independent 

variables, but they are not. Indeed, given a fixed speed  , the ball has to rotate with a certain 

angular speed  . To find the quantitative relation, assume that a ball of radius   is rolling along a 

straight line and has travelled a distance  ( ) at time  . By then it must have made  ( )    ⁄  full 

revolutions [since  ( )   ], or a rotation of 

 ( )      ( )    ⁄   ( )  ⁄  

radians about its axis. Differentiation yields 

 ( )   ̇( )   ̇( )  ⁄   ( )  ⁄   

Substitution in (↑) yields 

    
 

 
  2 +

 

 
 
 2

 2
 

which is solved with respect to   to obtain 

  √
     2

  2 +  
 √

  

 
    

Had we not taken the rotation into account, we would have used     
 

2
  2 and found 

  √   . Thus, we can ‘disregard’ the effects of the rotation by letting    .  

Notice in particular that the final speed   does not depend on either the mass or radius of the 

ball, not even when rotational motion is taken into account. As a concrete example, let      . 

Then   √     ⁄        ⁄  when rotation is taken into account, and   √          ⁄  

when rotation is neglected. The effect is not negligible at all. 

Let us end this section by examining the ‘shape’ of the motion. In the case of no rotational energy 

(   ), according to (↑) the speed is   √    when the ball has travelled a vertical distance  , 

the height of the plane. However, there is nothing special with this particular height. Instead, in 

general, the speed is   √    when the ball has travelled a vertical distance   for all    . A 

vertical distance   corresponds to a distance         along the slope, if we introduce   as a 

coordinate along the slope with     at the top. In addition, since the ball is moving along the 

slope,       ⁄ . Hence, 

  

  
 √         

or 

 

√ 

  

  
 √       

which is a separable first-order ODE, which is integrated to yield 

 √  √        

when we impose the natural coordinate restriction  ( )   . Thus17, 

                                                             
17 This is an overly involved way of obtaining this simple result. Indeed, the force of gravity on the ball is 
      and its component along the track is         . Thus the acceleration is constant, 
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       2  

that is,    2 just as in the case of free fall. When the rotational energy is taken into account, 

  

  
 √

  

 
        

or 

 

√ 

  

  
 √

  

 
      

which is integrated to yield 

  
 

  
       2  

We remark that the ‘shape’ of the motion is the same (still    2). The constant 
 

2
     has been 

replaced by 
 

  
      , however, and so the speed is slightly lower at each point. 

                                                                                                                                                                                              

                    
 

2
       2 imposing  ( )    and  ( )   . However, the ‘overly 

involved’ method works equally well in the case where the rotational energy is taken into account, and in 
this case it isn’t overly involved. Indeed, if we also consider the rotational motion, we need to consider the 
force of friction, causing the torque that makes the ball rotate. Thus the net force will be different from 
      ; it will be                        . 
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1.8 Kepler’s Laws of Planetary Motion 

Kepler’s laws of planetary motion are three fundamental theorems concerning the motion of the 

planets around the Sun, discovered by Johannes Kepler (1571-1630) in the early seventeenth 

century. They are 

1. The orbit of every planet is an ellipse with the Sun at one of its foci. 

2. The radius vector from the sun to a planet sweeps out equal areas during equal intervals 

of time. 

3. The square of the orbital period of a planet is proportional to the cube of the semi-major 

axis of its elliptic orbit. The constant of proportionality is a property only of the Sun. 

In this section we will derive Kepler’s laws from Newton’s laws of motion, the latter being pub-

lished almost a century after Kepler discovered his laws by investigating data obtained by the 

Danish astronomer Tycho Brahe (1546-1601). 

1.8.1 Ellipses 

Since we will be working a lot with ellipses, we will review some basic properties of these 

curves. (See Figure 18a.) 

Definition 

An ellipse   is a set of points (   ) satisfying the equation 

(
 

 
)
2

+ (
 

 
)
2

         

in a suitably positioned and oriented Cartesian coordinate system. The   and   axes are called 

the major and minor axes of the ellipse, and the constants   and   are called the semi-major and 

semi-minor axis lengths, respectively. 

Notice that ‘semi’ in this case means ‘half’. The ellipse is also the image   of the interval 

  [    [ under the parameterisation map 

  (   )  (           )      

Clearly the ellipse is a closed curve symmetric about both its major and minor axis, and if 

      we obtain a circle of radius  . 

Definition 

Let   be an ellipse with semi-major and semi-minor axes   and  , respectively. The quantity 

  √  (
 

 
)
2

 

is called the eccentricity of the ellipse. 

Notice that the eccentricity   [   [ is a dimensionless measure of the amount by which a circle 

has to be ‘flattened’ [by a linear transformation] in order to become the ellipse. Indeed, in a cir-

cle     and so    . At the other extreme, if     then   ⁄    and so    . 
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Definition 

The two points 

    √ 2   2 ̂  2  +√ 
2   2 ̂ 

are called the foci of the ellipse. 

Notice that    and  2 both lie on the major axis, that      2, and that |  |  | 2|  √ 
2   2  

 √  (
 

 
)
2
     , displaying the fact     2     ( ). Now we will prove the perhaps most 

well-known fact about the ellipse: 

Lemma 

Let    and  2 be the foci of an ellipse  . Then |    | + | 2   |         . 

Proof 

Let    . Then   (    √  
  

  
) for some   [    ] and we have 

|    | + | 2   |  

 √( + √ 2   2)
2
+ (  √  

 2

 2
  )

2

+

+√(√ 2   2   )
2
+ (   √  

 2

 2
)

2

 

 √ 2 +   √ 2   2 +  2  
 2 2

 2
+√ 2    √ 2   2 +  2  

 2 2

 2
 

  

(

 
 √
 2

 2
+  

 

 
√  

 2

 2
+   

 2 2

 2 2
+√   

 

 
√  

 2

 2
+
 2

 2
 
 2 2

 2 2

)

 
 
 

  (√
 2

 2
+  

 

 
 +   (   2)

 2

 2
+√   

 

 
 +

 2

 2
 (   2)

 2

 2
)  

  (√ 
 

 
 +  +  2

 2

 2
+√   

 

 
 +  2

 2

 2
)  

  (√( +
  

 
)
2

+√(  
  

 
)
2

)   (| +
  

 
| + |  

  

 
|)  

  ( +
  

 
+   

  

 
)     

since | |    and   [   [. ∎ 



ANDREAS REJBRAND D R A F T  http://english.rejbrand.se 

 63/314 

An alternative characteristic of the eccentricity is given by 

Lemma 

Let   be the distance from the origin to any of the two foci of an ellipse  , and let   be the semi-

major axis. Then the eccentricity     ⁄ . 

Proof (again) 

  √  (
 

 
)
2

 √
 2   2

 2
 
√ 2   2

 
 
 

 
 

by the definition of the foci. ∎ 

Definition 

The distance between any of the foci and the ellipse as measured along a line parallel to the mi-

nor axis is called the semi-latus rectum of the ellipse. 

 

Lemma 

The semi-latus rectum of an ellipse of eccentricity   and semi-major axis length   is  (   2). 

Proof 

The foci are located at    √ 2   2 and    . If (   )    then (  ⁄ )2 + (  ⁄ )2    and so 

    √  
  

  
   √  

     

  
   √

  

  
 
  

 
  

  (    )

 
   (   2). ∎ 

Figure 18a shows an ellipse with (   )  (       ) together with its foci. The eccentricity of this 

ellipse is       , its focal length is    , and its semi-latus rectum is    . 

 

Figure 18. a) An ellipse and its foci. b) The same ellipse translated to the left so that its right focus is at the 
origin. 
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1.8.1.1 The Polar Equation 

We end this subsection by giving an alternative characterisation of the ellipse, namely, the polar 

equation    ( ) of an ellipse oriented the usual way but with its right focus at the origin. We 

start with the usual equation of the ellipse: 

(
 

 
)
2

+ (
 

 
)
2

          

Since the right focus is located at  2  √ 
2   2 ̂ it follows that 

(
 + √ 2   2

 
)

2

+ (
 

 
)
2

   

is the Cartesian equation for the same ellipse but translated so that the right focus is found at the 

origin instead (see Figure 18b). We now introduce polar coordinates 

        

        

and obtain 

(
     + √ 2   2

 
)

2

+ (
     

 
)
2

    

Observe that 

√ 2   2

 
 √  

 2

 2
      √   2 

so that the equation can be written 

(
     

 
+  )

2

+ (
     

 √   2
)
2

    

We solve for   and find 

Lemma 

The polar equation of an ellipse with semi-major axis along the     axis and the right-most 

focus at the origin is 

  
 (   2)

 +      
 

where   is the semi-major axis length and   is the eccentricity. 

Again, this curve is shown in Figure 18b. We remark that the numerator in the polar equation is 

the semi-latus rectum of the ellipse. 

1.8.2 Hyperbolae 

We will also need some familiarity with hyperbolae, so we give a very brief treatment of these 

curves in this subsection. See Figure 19a. 
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Definition 

A hyperbola   is a set of points (   ) satisfying the equation 

(
 

 
)
2

 (
 

 
)
2

   

for some       in a suitably positioned and oriented Cartesian coordinate system. The two 

connected parts    {(   )           } are called the right (+) and left (−) branches of  . 

Notice that the branch    of the hyperbola is the image of   under the parameterisation map 

  (   )  (              )      

Hence, in a sense, the hyperbolic functions are to hyperbolae as are the trigonometric functions to 

ellipses. Notice also that hyperbolae are open curves and that, far from the origin, the branches of 

a hyperbola are closely approximated by the straight-line asymptotes 

   
 

 
   

Definition 

The quantity 

  √ + (
 

 
)
2

 

is called the eccentricity of the hyperbola. 

Clearly    , in contrast to the ellipse, where the quantity with the same name has    . 

Definition 

The two points 

    √ 2 +  2 ̂  2  +√ 
2 +  2 ̂ 

are called the foci of the hyperbola. 

Notice that |  |  | 2|   , and so the foci lie ‘inside’ each branch. Figure 19a displays a hyper-

bola and its foci. 
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Figure 19. a) A hyperbola and its foci. b) The left branch of the same hyperbola translated to the right so that 
the left focus of the hyperbola is at the origin. 

1.8.2.1 The Polar Equation 

We will need the polar equation of the left branch    of the hyperbola. To this end, we start with 

the Cartesian equation for the left branch of the hyperbola, 

(
 

 
)
2

 (
 

 
)
2

       

and, just as we did with the ellipse, we translate the curve horizontally, 

(
  √ 2 +  2

 
)

2

 (
 

 
)
2

     √ 2 +  2 

to obtain a left branch of a hyperbola with its left focus at the origin; see Figure 19b. Finally, we 

introduce polar coordinates, 

(
      √ 2 +  2

 
)

2

 (
     

 
)
2

         √ 2 +  2  

Solving for   yields 

Lemma 

The polar equation of the left branch    of a hyperbola   with its left focus at the origin is 

  
 ( 2   )

 +      
 

where   is the semi-major axis length and   is the eccentricity, and where         . 

Again, this curve is shown in Figure 19b. 
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1.8.3 Polar Coordinates 

Before continuing, we will derive the formulae for velocity and acceleration in (planar) polar 

coordinates (   ), defined by 

        

        

where (   ) are the Cartesian coordinates of some inertial reference frame. At each point in the 

plane, we introduce the polar coordinate basis vectors  ̂ and  ̂. Unlike the Cartesian coordinate 

basis vectors  ̂ and  ̂, the polar basis vectors are different at different points in the plane. 

Fix the angular coordinate   and vary the radial coordinate  ; this parameterises a radial line. 

The derivative is 

  

  
      

  

  
      

and therefore we define 

 ̂  (         ) 

as the radial basis vector at the point (   ). Notice that it is of unit length. Similarly, fix the radial 

coordinate   and vary the angular coordinate   to obtain a parameterisation of a circle. The de-

rivative is 

  

  
        

  

  
        

and so we define 

 ̂  (          ) 

as the angular basis vector at the point (   ). Notice that it is of unit length and that 

 ̂   ̂    

everywhere; that is, the coordinate curves of the polar coordinate system always intersect or-

thogonally. Now, let  ( ) be the geometric radius vector of a particle at time  . Let ( ( )  ( )) be 

the polar coordinates of the particle at this time. Then 

 ( )   ( ) ̂( ) 

where  ̂( ) is the radial unit vector at the point ( ( )  ( )). Differentiation yields the velocity 

 ̇( )   ̇( ) ̂( ) +  ( ) ̇̂( )  

  ̇( ) ̂( ) +  ( )(          ) ̇( )  

  ̇( ) ̂( ) +  ( ) ̇( ) ̂( ) 

using (↑), (↑), and the chain rule. Differentiating again, we obtain the acceleration 
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 ̈( )   ̈( ) ̂( ) +  ̇( ) ̇̂( ) +  ̇( ) ̇( ) ̂( ) +  ( ) ̈( ) ̂( ) +  ( ) ̇( ) ̇̂( )  

  ̈( ) ̂( ) +  ̇( )(          ) ̇( ) +  ̇( ) ̇( ) ̂( ) +  ( ) ̈( ) ̂( ) +

+  ( ) ̇( )(           ) ̇( )  

  ̈( ) ̂( ) +  ̇( ) ̇( ) ̂( ) +  ̇( ) ̇( ) ̂( ) +  ( ) ̈( ) ̂( )   ( ) ̇( )2 ̂( )  

 [ ̈( )   ( ) ̇( )2] ̂( ) + [  ̇( ) ̇( ) +  ( ) ̈( )] ̂( )  

1.8.4 The Simple Model 

Initially, we will use a slightly simplified model of the solar system: We will assume that the Sun 

is fixed at the origin of an inertial coordinate system. Thus, assume that the Sun is located at   of 

our inertial frame ℱ  ℱ, and let   be the position of a planet. Let   and   be the mass of the 

Sun and the planet, respectively. Then the net force on the planet is 

   
   

 2
 ̂ 

in spherical coordinates (     ).18 The torque on the planet is 

        ̂  ( 
   

 2
 ̂)    

and so its angular momentum is a constant of motion. What is the angular momentum? Well, 

        ̂      

Since this vector is constant, its direction is constant, and so the orbit is restricted to a plane, 

namely, the plane with normal direction  . Indeed, since     ̂    ,     at all times, and if   

is a constant, then   has always to be orthogonal to the same direction, and all such vectors lie in 

the same plane. The magnitude of the angular momentum, which is also constant, is 

  | |         ( ̂  )  

Using (↑) and (↑) we can write this 

  | |  |  ̂    |  |  ̂   ( ̇ ̂( ) +   ̇ ̂)|  |  ̂     ̇ ̂|    2 ̇  

It is customary to introduce the quantity 

  
 

 
   

the angular momentum per unit mass. Its magnitude, which is constant, is 

  | |   2 ̇  

1.8.5 Are the Orbits Circular? 

Simple [but not too accurate] astronomical observations seem to agree with the qualitative fea-

tures of circular orbits around the sun for all the planets. We also know that Newton’s laws do 

admit circular orbits. A planet orbiting the star in a circle of radius   requires the force to equal 

the centripetal force 

  
  2

 
 

if its speed is  . Since the force is of magnitude 

                                                             
18 This does not contradict our notation, according to which   | |. Indeed, the length | | of the radius 
vector equals the radial coordinate   of the point at which the radius vector points. 
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 2
 

theory requires 

  √
  

 
  

That is, given a distance   from the star, the speed of the planet in its circular orbit needs to be 

precisely √   ⁄ , independently of the mass of the planet. Put differently, we have shown that 

Newton’s laws admit circular orbits, and – in addition – that a planet that is put in orbit with the 

exactly right speed (given the distance to the star), will follow a circular orbit, indefinitely. But is 

every closed orbit necessarily a circle? It is not. The most general closed orbit is an ellipse, the 

circle being nothing but a special case of an ellipse. This is the content of Kepler’s first law, as we 

will show next. 

1.8.6 The General Orbit – Kepler’s First Law 

Newton’s second law for the planet is 

    
   

 2
 ̂  

Since we have already determined that the orbit is restricted to a single plane, we may – without 

loss of generality – choose the spherical coordinate system so that the orbit lies inside the 

    ⁄  plane. In this plane, the remaining spherical coordinates (   ) coincide with the (pla-

nar) polar coordinates. 

Now, the acceleration vector   is a geometric vector, but its components differ between different 

coordinate systems. In polar coordinates, we have derived the acceleration 

  ( ̈    ̇2) ̂ + (  ̇ ̇ +   ̈) ̂ 

where the derivatives of   and   are the derivatives of the planet’s polar coordinates with re-

spect to time and  ̂ and  ̂ are the polar basis vectors at the current position of the planet. Hence, 

Newton’s second law (↑) is equivalent to the system 

 ̈    ̇2   
  

 2
 

  ̇ ̇ +   ̈    

since  
   

  
 ̂ is also a vector at the same point and expressed in the same (local) basis. 

We will do two things now: 

 Introduce a new radial coordinate, and 

 introduce a new problem: Instead of finding   (   ), we wish to find    . 

The new radial coordinate is 

  
 

 
 

which implies, assuming     (so that  ̇ is never zero), 

  
 ̇

 2
   

 

 
  ̇   

 ̇

 2
  

 

 2
  

  
 ̇    
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and finally, 

 ̈  
 

  
 ̇  

 

  
(  

  

  
)    

 2 

  2
  ̇  

If we define 

( )  
 

  
( )  ( ) 

then we have transformed (↑) into 

   ̇        ̇2      2  

Divide by  2 to obtain 

  2     2       

that is, assuming    , 

   +   
  

 2
  

This is an inhomogeneous constant-coefficient second-order linear ODE. The homogeneous solu-

tion is 

  ( )       +       

and a particular solution to the full equation is 

  ( )  
  

 2
  

Thus, the full solution of (↑) is 

 ( )        +      +
  

 2
  

We assume that (   )  (   ). Indeed, we already are familiar with the circular orbit. The Swe-

dish hjälpvinkelmetod yields 

 ( )      ( +  ) +
  

 2
 

for   √ 2 +  2    and some    . Obviously, we can choose the polar coordinate system in 

such a way that     and then the solution is 

 ( )       +
  

 2
  

Recalling that   
 

 
, solving for  , and defining 

  
  2

  
     

 

 (   2)
 

 2

  (   2)
  

assuming    , we obtain 

  
 (   2)

     +  
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1.8.6.1 Case 1 

If 

  
  2

  
   

this is the polar equation of an ellipse with its right focus at the origin (where the Sun is!), semi-

major axis    , and eccentricity   ]   [. 

1.8.6.2 Case 2 

If, instead, 

  
  2

  
    

then we can define 

 ̃      
 

 (   2)
 

 

 ( 2   )
   

to obtain 

  
  ̃(   2)

     +  
 
 ̃( 2   )

     +  
 

which is the equation for the left branch of a hyperbola with left focus at the origin (where the 

Sun is), semimajor axis  ̃    and eccentricity    . 

1.8.6.3 Case 3 

In case of the (exceedingly rare) coincident 

  
  2

  
    

we obviously have to return to (↑), since in the next step (↑), we assumed    . If    , (↑) 

yields 

 (    +  )  
 

 
  

Recalling that         and   √ 2 +  2, this may be written 

 + √ 2 +  2  
 

 
 

or 

  
 

  
 
 

 
 2 

which clearly is a parabola. The origin (the location of the Sun) is a distance    ⁄  to the left of 

the vertex of the parabola. This point is called, no surprise, the focus of the parabola. 

1.8.6.4 Case 4 

In the derivation above, we almost tacitly assumed that the constant    . For completeness, 

we now investigate this (rather trivial) possibility. Indeed, if    2 ̇   , motion is clearly 

purely radial, and Newton’s law (↑) reduces to 
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 ̈   
  

 2
  

which, of course, can be written 

  ̈   
   

 2
  

and it is obvious that the body is in free radial fall towards the Sun; the trajectory is thus a 

straight line before the body is engulfed by the Sun. 

1.8.6.5 Summary 

We have shown that the orbit of a massive particle in a gravitational field from a fixed star, such 

as a planet or a comet in the vicinity of the Sun, is either of the conic sections, that is, an ellipse, a 

hyperbola, or (rarely) a parabola. Of these, the only closed curve is the ellipse, and so it follows 

that the orbit of every planet around the Sun is an ellipse, and we have also shown that the Sun is 

at one of the foci. This is precisely the contents of Kepler’s first law. 

Distant comets approaching the solar system are ‘slung’ by the Sun, and we have shown that 

their orbits are almost certainly hyperbolae. The fact that the curvature of the hyperbola tends 

to zero as we move away from its point of symmetry is clearly related to the fact that, far from 

the Sun, (almost) no forces act on the comet, and so, according to Newton’s first law of motion, it 

travels (almost) along a straight line. 

1.8.7 Kepler’s Second Law 

We have found that the angular momentum 

    2 ̇ 

is a constant of motion, and, in fact, this statement is equivalent to Kepler’s second law. Indeed, 

the area swept out by the radius vector during an (infinitesimal) time    is equal to the circular 

sector area  

   
 

 
 2   

where    is the corresponding change in the polar coordinate. But 

   
 

 
 2   

 

 
 2
  

  
    

 

 
 2 ̇   

 

 
    

where     ⁄  is the (constant) angular momentum per unit mass, which implies 

  

  
 
 

 
            

That is, the rate of sweeping out area is constant in time, which is precisely the second law of 

planetary motion. 

1.8.8 Kepler’s Third Law 

The orbit of a planet is an ellipse 

  
 (   2)

     +  
 

where   is the semi-major axis length and   is the eccentricity. Thus the semi-minor axis length 

is    √   2 and therefore the area of the ellipse is 
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       2 √   2  

Kepler’s second law (↑) then implies that the orbital period of the planet 

  
 

    ⁄
 
  2 √   2

 
  

But according to (↑), 

 (   2)  
 2

  
 

which is a link between geometrical properties of the ellipse (the LHS) and dynamical properties 

of the planetary orbit (the RHS); in particular, 

  √   (   2)  

thus (↑) can be written 

  
  2 √   2

√   (   2)
 
  

√  
   2⁄   

That is,     2⁄  and the constant of proportionality, 
2 

√  
, is a property of the star (or the ‘plane-

tary system’), and is therefore the same for any planet in the system, and this is precisely the 

contents of the third law of planetary motion. 

1.8.9 The Validity of the Simple Model 

We have considered a somewhat simplified model of the Sun–planet system. We have assumed 

that the Sun is fixed at the origin of our inertial reference frame, but that is clearly not the case. 

Indeed, since the planet is affecting the Sun with the force of gravity (equal in magnitude to the 

force by which the Sun affects the planet), the Sun is accelerating, and so there cannot exist any 

inertial frame relative to which the Sun is always at rest. Notice, however, that the motion of the 

Sun is extremely small compared with the motion of the planet, since the Sun is very much heav-

ier. Indeed, the ratio between the mass of the Sun and the mass of the Earth is about 333 000. 

The heaviest planet in the solar system is Jupiter. The Sun–Jupiter mass ratio is about 1 050. 

Hence, even in this case, it is a fairly decent approximation to consider the Sun as being fixed at 

the origin. At the other extreme, the mass ratio between the Sun and a comet or asteroid is huge, 

and the approximation is essentially without error; for instance, the ratio between the mass of 

the Sun and the mass of Halley’s comet is almost     . 

We have also neglected the gravitational influence of the other planets (and other bodies) orbit-

ing the Sun; of course, these will influence the Sun–planet system. However, again, the mass of a 

planet is generally negligible compared to that of the Sun, and so the Sun is barely affected. Also, 

the influence on the Earth (say) from the other planets in the solar system is almost always neg-

ligible compared to gravitational attraction from the Sun for the same reason. 

Still, one might wonder if there is a way to improve the model, and, indeed, there is. Since the 

solar system is very isolated in the galaxy, the gravitational field due to the rest of the galaxy is 

almost constant inside the solar system. Hence, any particle in free fall in this region of space, 

were it not for the solar system, would serve as the origin of an inertial frame to an outstanding 

approximation. As we have shown in previous section, such a ‘particle’ is the centre of mass of 

the solar system. In other words, the CM frame of the solar system is an almost perfect inertial 
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frame. This frame should be used for a more advanced treatment. In particular, this would make 

it possible to study systems of two bodies, gravitationally bound to each other, where their 

masses are comparable, e.g. binary star systems, or big moons of small planets (considering only 

the planet–moon system). 

Let us investigate the centre of mass of a two-body system. Hence, let   and   be two massive 

bodies, where the masses may be of the same order of magnitude. If their positions are    and   , 

relative to some  frame of reference, and their masses are    and   , respectively, then the CM 

is located at 

  
 

 
(    +    )  

where     +   is the total mass. Hence, 

  
 

 
(    +    )    +    (

  
 
  )   +

  
 
  +    (

   
 
)  +

  
 
  +    

   +
  
 
(     )  

The geometric interpretation of this is obvious: you get to the CM ( ) by going to the first body 

(  ) and then you go    ⁄  of the displacement from    to   . Hence, in the limit    ⁄    

(essentially all the mass belongs to  ),     , while in the limit    ⁄    (essentially all the 

mass belongs to  ),     . Let us consider a few actual figures: let   be the Sun and   be the 

Earth, Jupiter, and Halley’s comet, respectively. Then the values for    ⁄  are as follows. 

  Earth Jupiter Halley’s comet 

   ⁄                              

 

The actual distance between   and the CM is, from (↑), 

|    |  
  
 
|     |  

Assume that the distance between the Sun and the Earth, Jupiter, and Halley’s comet is     , 

    , and      , respectively. Then the corresponding normalised distances are given below; 

the values are normalised in terms of the solar radius   . 

  Earth Jupiter Halley’s comet 
|    |   ⁄                            

 

Clearly, the CM of both the Sun–Earth and the Sun–Halley system lies almost at the core of the 

Sun, while the CM of the Sun–Jupiter system lies almost precisely at the surface of the Sun. 
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1.9 Classical Gravity – Gaussian Formalism 

The foundation of classical gravity is Newton’s law of universal gravitation, 

    
   2
 2

 ̂ 

introduced in previous sections. In this section we will derive Gauss’ law for gravity. This is ac-

tually a very easy task owing to the general machinery of vector calculus, but it consists of a fair 

number of steps, and we will investigate each one of them in detail. Let’s start with the core of 

the topic: 

Lemma 

Assume that the gravitational field is 

 ( )   
  

 2
 ̂ 

(that is, there is a particle of (active gravitational) mass   at the origin). Let   be a sphere of 

radius     centred at the origin. Then19 

∯    
 

       

Proof 

∯    
 

 ∯( 
  

 2
 ̂)  ( 2      ̂)    

 

 ∯(       )    
 

 

    ∫       
 

 

∫   
2 

 

        

∎ 

Since the gravitational field is conservative (it has a potential), it is irrotational. But it is also of 

zero divergence. 

Lemma 

The gravitational field 

 ( )   
  

 2
 ̂ 

is divergence-free, that, is,       everywhere except at the origin. 

Proof 

    
 

 2     
(
 

  
[ 2      ( 

  

 2
)] +

 

  
[       ] +

 

  
[   ])    

                                                             
19 When talking about the flux through a closed surface we always mean the flux from the interior to the 
exterior of the surface, unless the opposite is explicitly stated. 
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because the  -dependance in the field component     2⁄  is precisely compensated by the 

scale factor  2      of the coordinate system. ∎ 

Lemma 

Let  

 ( )   
  

 2
 ̂ 

be the gravitational field. Then 

∯    
 

       

for any closed surface   enclosing the origin. 

Proof 

Let         | | be the distance between the origin and  . Introduce the sphere    of radius 

  ⁄  centred at the origin, and let   denote the bounded region in space the boundary of which is 

       . 

 

Figure 20. A bounded region  . 

By Lemma NN, 

∯     
  

       

and, applying the divergence theorem to   and   , we find 

∯     
  

 ∯     
       
      

+∯    
 

 ∭     
 

   ∯    
 

       

where ∯            
      

      is the flux through    in the direction out of  , that is, towards the 

origin. ∎ 

𝑆  

𝑆 

𝐷 
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Lemma 

Let  

 ( )   
  

 2
 ̂ 

be the gravitational field. Then 

∯    
 

   

for any closed surface   not enclosing the origin. 

Proof 

Let   be the volume enclosed by  , so that     . Then 

∯    
 

 ∭     
 

    

∎ 

Lemma 

Let   be a closed surface, the interior of which contains a particle of mass  , producing a gravita-

tional field  . Then ∯     
 

      . 

Proof 

Choose a coordinate system in which the particle is at the origin and apply Lemma NN. ∎ 

Lemma 

Let   be a closed surface, the exterior of which contains a particle of mass  , producing a gravita-

tional field  . Then ∯     
 

  . 

Proof 

Choose a coordinate system in which the particle is at the origin and apply Lemma NN. ∎ 

Lemma 

Let   be a closed surface, and consider a system of   particles (index set  ) with positions    and 

masses   . Let    [      ( )]. Let   be the total gravitational field due to all   particles. Then 

∯    
 

       

where 

  ∑    
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is the total mass inside  . 

Proof 

The gravitational field at   from the  th particle alone is 

  ( )   
   

|    |
 
(    )  

Since you add forces to get the net force, the net gravitational field is 

  ∑  
   

  

Then the flux 

∯    
 

 ∯(∑  
   

)    
 

 ∯(∑  
   

   )
 

 ∑(∯     
 

)

   

  

Now, by Lemmas NN and NN, 

∯     
 

           

Thus 

∯    
 

 ∑(        )

   

        

∎ 

We have therefore shown 

Proposition (Gauss’ Law for Gravity) 

Let   be a closed surface encompassing a total mass  . If   is the geometric net gravitational 

field in space, then 

∯    
 

        

If we have instead a continuous distribution of mass, given by a mass density function  , then we 

obtain 

Corollary 

           

Proof 

Let   be any bounded region with boundary     . Then Gauss’ law 

∯    
 

 ∭     
 

 

but 
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∯    
 

           ∭   
 

  

Thus, since this has to hold for every bounded region  , 

           

∎ 

1.9.1 Applications of Gauss’ Law for Gravity 

Proposition 

Consider, centred at the origin, a spherically symmetric body   of total mass   and radius  . 

Outside the body (at    ), the gravitational field from   is identical to the field that a point 

particle of mass   located at origin would produce. 

Proof 

Let    be a sphere of radius     centred at the origin. Because the body is spherically symmet-

ric, it is obvious that the actual gravitational field is  ( )   ( ) ̂ for some function  . Now 

Gauss’ law for gravity states 

∯     
  

       

while 

∯     
  

 ∯  ( ) ̂   2      ̂    
  

  ( ) 2∫       
 

 

∫   
2 

 

    ( ) 2  

Combining these results we find 

         ( ) 2 

and so 

 ( )   
  

 2
 

yielding 

 ( )   
  

 2
 ̂  

∎ 

Consequently, as long as the body is spherically symmetric and has mass  , the gravitational 

field outside the body is independent of the internal structure of the body. For instance, a point 

particle of mass   produce the same external field as a huge star of total mass  , as does a thin 

(and hollow) spherical shell of total mass  . 

Proposition 

Inside a spherically symmetric shell of radius  , the net gravitational field due to the shell van-

ishes. 
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Proof 

Same as last proposition but with     and ∯     
  

  . ∎ 

Consider now a spherically symmetric ball. It is obvious (from symmetry) that the net gravita-

tional field from the ball vanishes at the centre of the ball. Moreover, if we know the radial dis-

tribution of mass (the radial density function), we can compute the field at every point. The sim-

plest case is given below. 

Proposition 

Consider a homogeneous ball of density   and radius  . The gravitational field tends linearly to 

zero as one approaches the centre of the ball along a radius. 

Proof 

We wish to find the gravitational field   inside the ball. From symmetry, it is clear that 

 ( )   ( ) ̂. Let    be a sphere of radius     concentric with the ball. Inside   , the total 

mass is 

   
 

 
      

Therefore, Gauss’ law for gravity reads 

∯     
  

  
  

 
 2     

while 

∯     
  

 ∯  ( ) ̂   2      ̂    
  

  ( ) 2∫       
 

 

∫   
2 

 

    ( ) 2  

Thus 

 
  

 
 2        ( ) 2 

yielding 

 ( )   
 

 
     

and 

 ( )   
 

 
     ̂  

Clearly    . ∎ 

Occasionally the last three propositions are referred to as the shell theorems. Needless to say, it 

requires quite a lot of work to prove them using only the usual form (↑) of Newton’s law of uni-

versal gravitation (and not the Gaussian formalism). 

Combining Propositions NN-M, we have that a ball of radius  , constant density  , and total mass 

  
 

 
     produces the gravitational field  ( )   

 

 
     ̂   

   

  
 ̂ in its interior (   ) 

and the field  ( )   
  

  
 ̂ in its exterior (   ). Thus, the potential is 
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 ( )  { 

  

   
 2  

   

  
   

 
  

 
   

 

where we have shifted the interior potential by an amount  
   

2 
 in order to match it to the exte-

rior potential. We chose to shift the interior potential and not the exterior potential because we 

are fond of the conventional behaviour  ( )    as    . 

The Sun is most definitely not of constant density, but to get an idea about the potential, we will 

use the mass and radius of the sun as   and  , respectively, to plot    ( ). 

 

Figure 21. The gravitational potential inside and outside a homogeneous and spherically symmetric body. 

Notice that the slope tends to zero both as      and as    , as expected. The highest slope 

(that is, the strongest field) is found near the surface    . Of course, we can also find the po-

tential along a full straight line through the origin. Indeed, we only need to construct the even 

extension of  . Doing so, we obtain 



 Physics Done Right, an Attempt 

 82/314 

 

Figure 22. The gravitational potential inside and outside a homogeneous and spherically symmetric body. 

Finally, replace the solid ball by a thin, hollow shell of the same mass and radius. Then the inte-

rior field is zero, and so the potential is constant: 

 

Figure 23. The gravitational potential inside and outside a homogeneous and spherically symmetric thin 
shell. 
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Of course, all these images should be compared to the graph of the potential form a point mass 

(of the same mass) at the origin: 

 

Figure 24. The gravitational potential from a point mass at the origin. 

 

 

 



 Physics Done Right, an Attempt 

 84/314 

2 Classical Electromagnetism 

 

 

 

 

 

 

 

 

Figure 25. A diagram that we will use in Section 2.3.1 to find 
the electrostatic field from an infinitely long, uniformly 
charged wire, using only the classical Coulomb law. In this 
chapter, we will also introduce the Maxwell equations, and 
use them to ‘rediscover’ one of the most fascinating break-
throughs in the history of science, namely, the fact that light 
is an electromagnetic wave. 

�̂� 

�̂� 

𝑃  (𝑟    ) 

𝛼 

𝑧 

�̂� 
�̂� 

𝑧 

𝑟 𝑑 
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2.1 The Four Classical Laws 

We will now review the four major results of classic electromagnetic theory. In addition to Cou-

lomb’s law, which describes the electric field   due to (static) charged particles, we are familiar 

with the Biot–Savart law that gives the magnetic field due to a (stationary) current of charged 

particles. If the current   [unit   ⁄ ] flows through a ‘wire’ (curve)  , then the magnetic field at   

is 

 ( )  ∫
       ̂( 

 )

   (  )2 

 

where    is the magnetic constant20,      is the current point on the curve,    is the vector line 

element,   (  )  |    | is the distance from    to  , and  ̂(  ) is a unit vector pointing from    

to  . The Biot–Savart law implies the Ampère’s circuital law 

∮   
 

     

where   is the charge current flowing through the closed loop   [that is, flowing through any 

surface the boundary of which is  ]. Notice that magnetic forces arise when charges are in mo-

tion only. Later on, we will see that the special theory of relativity actually describes the magnet-

ic field as a relativistic correction of the electrostatic field. In other words, electric and magnetic 

forces are merely two aspects of the same physical phenomenon, the electromagnetic field. 

Hence, electric and magnetic forces can be unified in a single electromagnetic theory. This is why 

we talk about the four forces of nature, and not the five forces that would result if we replaced 

‘electromagnetic’ with ‘electric’ and ‘magnetic’ as two separate entities. 

In fact, unification of the forces of nature into more fundamental theories is one of the most ul-

timate goals of modern theoretical physics; this far the greatest achievement in this field is the 

unification of the electromagnetic forces with the weak nuclear force, the so-called electroweak 

unification. This, however, goes far beyond ‘simple’ relativity theory, so we will not discuss that 

topic, but settle for a description of the beautiful electromagnetic unification. 

We have now formulae describing the formation of the electric and magnetic fields. The third 

ingredient of electrodynamics is Faraday’s law of induction, which quantifies the phenomenon of 

electromagnetic induction, that is, the generation of an electric potential due to a time-varying 

magnetic field. The standard expression for this law is 

∮    
  

  
 

  
∬   
 

 

where   is any surface and    its boundary. The surface integral ∬    
 

 of the magnetic field is 

called the magnetic flux, and therefore the law states that the electromotive force [which is a 

potential, not a force] ∮    
  

 around a closed circuit is proportional to the time rate of change of 

the magnetic flux through the circuit. 

The fourth and final law of electrodynamics is the law stating the absence of ‘magnetic mono-

poles’, namely 

∯    
  

    

                                                             
20 In SI units,         

        . 
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where      is any closed surface in space [being the boundary of some volume  ]. This law is 

also a consequence of the Biot–Savart law. 
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2.2 Maxwell’s Equations 

The laws of electromagnetism are normally stated as the Maxwell equations: 

Original law Differential form Integral form  

Coulomb’s law     
 

  
 ∯     

 

    

 (M1) 

Ampère’s law        +     
  

  
 ∮    

  

   ∬   
 

+     ∬
  

  
  

 

 (M2) 

Faraday’s law      
  

  
 ∮    

  

  
 

  
∬   
 

 (M3) 

No magnetic 
monopoles 

      ∯    
  

   (M4) 

 

In this table,   is any volume and   is any non-closed surface. Consequently,    is a closed sur-

face and    is a closed curve. When formulated in this way, the Coulomb law (M1) is often called 

‘Gauss’ law’, and the ‘no monopoles’ law (M4) is called the ‘Gauss’ law for magnetism’. Notice 

that the differential forms and the integral forms of these two laws are trivially converted to and 

from each other by means of the divergence theorem, or Gauss’ law of vector calculus. On the 

other hand, the differential and integral forms of the Ampère and Faraday laws are trivially con-

verted to and from each other by means of Stoke’s theorem. Thus, the set of four ‘differential 

form’ equations are equivalent to the set of the four ‘integral form’ equations. Further, the Max-

well equations (in either form) are equivalent to the classical four theorems, with one notable 

exception, as we will point out shortly. 

We will now investigate the Maxwell equations one by one. The first one, (M1), relates the 

charge density scalar field   [unit    ⁄ ] to the divergence of the electric field  . It follows from 

the notation used in the table that   ∭    
 

 is the total charge enclosed by   . (M1) is equiv-

alent to the old Coulomb inverse square law in precisely the same way that Gauss’ law for gravi-

ty (↑) is related to Newton’s law of universal gravitation (↑). Just as in the case of gravity, the 

Gaussian form Coulomb’s law is superior in situations where symmetry is present  

The second Maxwell equation, (M2), relates the curl of the magnetic field to the charge current 

density field   [unit     2⁄     2] and the time derivative of the electric field. With the re-

striction     ⁄   , as is the case if a constant current is flowing in an infinitely long, straight 

conductor, this is equivalent to the old Ampère’s circuital law. The additional term         ⁄  is 

called Maxwell’s correction, and its necessity is displayed in most courses in elementary electro-

magnetics. Notice that ∬    
 

   is the current [unit   ⁄   ] flowing through the surface  . 

The third Maxwell equation, (M3), is trivially seen to be Faraday’s law of electromagnetic induc-

tion, and the fourth Maxwell equation, (M4), states that there is no ‘magnetic charge’ like the 

‘electric charge’. 

2.2.1 The Bridge between Mathematics and Physics 

The Maxwell equations completely describe the electromagnetic field. But what is ‘the electro-

magnetic field’? Indeed, the electric and magnetic fields are mere mathematical constructs that 

assign vectors to each point in space: what are these vectors? The physical interpretations of 

these fields, or the definitions of the fields, are as follows: 
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 The electric field   is the unique vector field satisfying      where   is the (physically 

measurable) force on a test particle with charge    , which is at rest with respect to 

the system of coordinates. 

 The magnetic field   is the unique vector field satisfying     +      where   is the 

(physically measurable) force on a test particle with charge     and velocity     

with respect to the system of coordinates, and where   is the (now well-defined) electric 

field. 
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2.3 Examples of Electromagnetic Fields 

We will derive some simple examples of electromagnetic fields. 

2.3.1 The Electric Field from a Uniform and Infinite Charged Wire 

As our first example, we will derive the expression for the electrostatic field outside an infinitely 

long wire with a constant charge density [unit    ]. First we will do this from first principles, 

using only Coulomb’s law. Then we will redo the derivation using Gauss’ law. This way we can 

both confirm the latter and better appreciate the benefit of the latter in systems with symmetry. 

2.3.1.1 Approach 1: Coulomb’s Law 

Introduce a cylindrical coordinate system such that the wire is situated along the   axis. From 

symmetry reasons, the electric field cannot depend on   or  ; nor can the electric field vector at 

any given point have a non-zero projection onto  ̂ or  ̂. Thus    ( ) ̂. Now consider the point 

(     )  (     ). By our symmetry considerations, it suffices to compute the electric field at 

this point (which depends on   only). 

 

Figure 26. An infinite, uniformly charged metal wire. 

Consider a small part    of the wire located at   (between   and  +   , say). The distance be-

tween this part and the field point   is  ( )  √ 2 +  2, and so this part of the wire will con-

tribute with an electric field 

  ( )  
   

     ( )
2
 ̂( ) 

where  ̂( ) is the direction from the part    to the field point  . But since we have already de-

termined that the net electric field at   (or anywhere) has only a radial component, it clearly 

suffices to consider only the radial projection of each   ( ). This is 

   ( )  
   

     ( )
2
 ̂( )   ̂  

   

     ( )
2
      

But the angle 

   ( ̂  ̂)        
 

 
 

and, therefore, 

              
 

 
 

 

√ +
 2

 2

 
 

√ 2 +  2
 

�̂� 

�̂� 

𝑃  (𝑟    ) 

𝛼 

𝑧 

�̂� 
�̂� 

𝑧 

𝑟 𝑑 
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and 

   ( )  
    

    ( 
2 +  2) 2⁄

  

Thus, the total field experienced at   is 

  ( )  ∫   ( )
 

 ∫
    

    ( 
2 +  2) 2⁄ 

 
 

     
  

that is, 

  
 

     
 ̂  

2.3.1.2 Approach 2: Gauss’ Law 

The derivation of (↑) is far simpler using Gauss’ law. By symmetry (again), the electric field 

 ( )   ( ) ̂ does only depend on the radial coordinate, and at any point, the field vector can 

only point along the radial direction. Now, consider a solid cylinder   of radius   and height   

with the   axis as its symmetry axis. The total encompassed charge (inside  ) is     . Thus 

Gauss’ law states 

∯    
  

 
 

  
 
  

  
 

where    is the boundary of  , and is composed of one cylinder   and two disks    and  2. Since 

the electric field is perpendicular to the disks    and  2, the flux through these disks vanishes, 

and we are left with 

∯    
  

 ∬   
 

 ∬ ( ) ̂    ̂    
 

   ( )∫   
2 

 

∫   
    

  

      ( ) 

if the cylinder occupies   [     +  ]. Thus 

     ( )  
  

  
 

or 

 ( )  
 

     
 

so that the sought field is 

  
 

     
 ̂  

2.3.2 The Magnetic Field from a Stationary Current in a Straight Wire 

Consider again an infinite wire along the   axis of a cylindrical coordinate system. This time, let 

the wire carry a constant electric current   [unit   ⁄ ] in the  ̂ direction. From symmetry, the 

magnetic field cannot depend on   or  . Therefore, it suffices to compute the field at 

(     )  (     ). Also by symmetry, at any given point, the field vector cannot have a projec-

tion in the  ̂ direction. However, since we have broken the symmetry by assigning a positive 

direction of the current along the wire, the field vector can in fact have a non-zero component in 

the  ̂ direction. Indeed, the right-hand rule assigns to a positive direction of the current, a posi-

tive sense of rotation around the wire. 
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This problem can be solved either naïvely using the Biot–Savart law, or more efficiently (again 

due to symmetry) using the Ampère’s circuital law. We will demonstrate both approaches. 

2.3.2.1 Approach 1: The Biot–Savart law 

The Biot–Savart law is 

 ( )  ∫  ( )
 

 ∫
       ̂( 

 )

   (  )2 

  

Now   is a straight line, and so    is constant. The integrand is a vector with the direction of 

    ̂(  ). This direction is perpendicular both to the wire (  ) and to the direction  ̂(  ) from 

the current point    on the wire to the field point  . Given a fixed field point  , such as 

(     )  (     ), the latter ( ̂(  )) lies always in the same plane. Thus, the direction of the in-

tegrand is constant, and, in addition, is given by the right-hand rule. Integrate from      to 

   . Then       ̂ and so the direction of     ̂(  ) is everywhere that of  ̂. Consequently, 

 ( )   ( ) ̂, and a small contribution 

   
   

   (  )2
(    ̂(  ))  

         

  ( 2 +  2)
 ̂ 

where 

   ( ̂  ̂)        
 

 
 

so that 

              
 

 
 

  ⁄

√ + (
 
 )
2
 

 

√ 2 +  2
 

and 

   
      

  ( 2 +  2) 2⁄
 ̂  

Therefore, the total magnetic field at   is 

 ( )  ∫  
 

 ∫ (
      

  ( 2 +  2) 2⁄
 ̂)

 

 
    

  
 ̂∫

  

( 2 +  2) 2⁄ 

 
   

   
 ̂  

Thus 

  
   

   
 ̂  

2.3.2.2 Approach 2: Ampère’s Circuital Law 

The circuital law is superior in situations with symmetry, as is Gauss’ law when it comes to elec-

trostatics (compared with Coulomb’s law), and as is Gauss’ law of gravity when it comes to gravi-

tational fields (compared with Newton’s law of universal gravitation). 

Indeed, since we know that the field has the form    ( ) ̂, we introduce a circular loop   of 

radius   around the wire, at some height. For simplicity, we take   to be the image of 

  (     )  (     ) as   [    [. Then the circuital law states 

∮    
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while 

∮    
 

 ∫  ( ) ̂      ̂
2 

 

  ( ) ∫   
2 

 

    ( )   

Thus 

       ( )  

and so 

 ( )  
   

   
 

and 

  
   

   
 ̂  
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2.4 The Electromagnetic Potentials 

In the electrostatic case, where there is no electric current – and therefore no magnetic field –, 

    and so (M3) states that the electric field   is irrotational. Therefore, there exists a poten-

tial scalar field    , defined up to an additive constant, such that 

         

This electrostatic potential, measured in volts, is familiar to everyone. For instance, the absolute 

difference |   (  )     ( 2)| in voltage between the two poles of a typical battery, located at    

and  2, is      . Now (↑) makes (M3) an identity, whereas (M1) yields 

 2     
 

  
 

which is known as Poisson’s equation. In particular, in vacuum,     and 

 2      

which is Laplace’s equation. Given a bounded and sufficiently ‘nice’ region   in space, the Di-

richlet problem of finding     satisfying Laplace’s equation in all of   and satisfying the bounda-

ry condition    ( )   ( ) for all     , where   is a given function on the boundary   , has a 

unique solution. A standard way of finding the solution in the two-dimensional case [that is, 

   2  ] is to employ a conformal mapping of   into some simpler region    in which the 

solution is known. See (Saff & Snider, 2003) for details on this technique. [Notice that every 

three-dimensional problem with cylindrical symmetry is equivalent to a two-dimensional prob-

lem.] 

In the non-static case, (↑) ceases to be valid. Indeed, a vector field with a non-zero rotation can-

not be the gradient of any scalar field  , because of the vector identity   (  )   . But (M4), 

which, as it stands, is the most general form of this Maxwell equation, implies that there exists a 

vector potential   such that 

       

This makes (M4) true due to the vector identity   (   )   . Now, let   be any such vector 

potential, and consider the vector field 

   +
  

  
  

Then 

      ( +
  

  
)     +   (

  

  
)     +

 

  
(   )     +

 

  
( )    

by the full (M3). Therefore   is irrotational, and so there exists a scalar potential   such that 

     , which is well-defined up to an additive constant. Let   be such a potential. Then, by 

the definition of   we have 

Proposition 1 

Given an electromagnetic field (   ), there exists a scalar field   and a vector field   such that 
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Definition 2 

The scalar field   and the vector field   of Proposition 1 are called the scalar potential and the 

vector potential of the electromagnetic field, respectively. 

Notice that in the electrostatic case, the scalar potential   reduces to the familiar electrostatic 

potential     discussed earlier in that       in this case. 

The vector potential is not unique. Indeed, given a vector potential  , consider 

    +    

where   is any scalar field. Then 

       ( +   )     +   (  )        

and so    is also a vector potential for  . This freedom in choosing the vector potential is called 

gauge freedom, and any additional requirement that will fix any particular vector potential (or, 

at least, which restricts the class of admissible potentials) is called a gauge choice. What happens 

to the scalar potential   when we replace   by     +   ? Note that 

      
  

  
     

 

  
(     )      

   

  
+  (

  

  
)    (  

  

  
)  

   

  
 

and, clearly, we have to replace the old scalar potential   by 
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2.5 Electromagnetic Waves 

Before Maxwell, the nature of light was unclear. Newton thought of light as a current of particles, 

but at the turn of the eighteenth century, there were also physicists that believed light to be a 

wave [of some sort] travelling through some medium, the so-called ‘ether’, in much the same 

way that sound travels through matter. In 1801, it is believed, the English scientist Thomas 

Young performed his famous double-slit experiment, demonstrating the wave-like properties of 

light, and, by so doing, settled the conflict in favour of the wave hypothesis. Not until the advent 

of quantum mechanics [Compton scattering, the photoelectric effect, etc.] did the particle nature 

manifest itself experimentally, to yield the ‘double nature’ that light is known to have today. 

Here we will focus on the wave theory of light. Even if Young’s experiment did support a wave 

theory of light, it said absolutely nothing about what kind of wave light is. After all, any mathe-

matical quantity that satisfies the wave equation is called a ‘wave’, no matter if the quantity is 

the pressure in a gas (as in the case of sound), a force field, or something else. 

Today we know better. Light, and, more generally, electromagnetic radiation, is a wave of the 

electric and magnetic fields, that is, each component of   and   satisfies the wave equation. As 

force fields, however, they require no medium through which to travel. Hence, there is no need 

for any ‘ether’. In contrast, being a pressure wave, sound does require a medium, in which the 

pressure can be varied according to the art of Fourier synthesis. We will now see what led the 

physicists to the discovery that light is (very likely) an electromagnetic wave. 21 

First, a few definitions that extend differential operators normally applied exclusively to scalar 

fields to vector fields, basically by letting them act component-wise on the vector fields. 

Definition 3 

Let   (        ) be a vector field. Then we define the ‘gradient’    (         ) 

which is now a matrix whose columns are the ordinary gradients of the scalar components of  . 

Furthermore, for any matrix  , we define the ‘divergence’, which is now a vector, by 

    (        2     ) where    is the  th column of   treated as a vector. Finally, we 

define the ‘vector Laplacian’  2    (  ) which is now a vector. 

These definitions imply 

Corollary 4 

Let   (        ) be a vector field. Then 

 2  ( 2    
2    

2  )  

Now, consider the Maxwell equations in vacuum. They are 

                                                             
21 I hate when upper secondary school teachers define light as ‘a wave’ without saying what it is that 
‘waves’. I recall one classmate of mine that said to me, “God, that’s so cool – if you make sound with high 
enough frequency, you’ll get light!” And, indeed, since both ‘light’ and ‘sound’ had been defined as ‘waves’, 
that was almost a valid conclusion. 
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     (   )

        
  

  
(   )

     
  

  
(   )

      (   )

 

 

Differentiation of (MV2) with respect to time yields 

  (
  

  
)      

 2 

  2
 

and, using (MV3) to substitute for     ⁄ , we obtain 

  (   )       
 2 

  2
  

It is straightforward to show the vector identity 

  (   )   (   )   2 (  ) 

where  2 is our new vector Laplacian. In this case, the identity yields 

 (   )   2       
 2 

  2
  

But since       we simply end up with 

 2 

  2
  2 2   (  ) 

which is the (vector) wave equation with speed 

  
 

√    
  

By Corollary 4 this means that each (scalar field) component of   satisfies the ordinary wave 

equation. Similarly, differentiation of (MV3) yields 

  (
  

  
)   

 2 

  2
 

where we use (MV2) to obtain 

  (
 

    
   )   

 2 

  2
  

The same vector identity (VI), together with      , then gives 

 2 

  2
  2 2   (  ) 

with the same speed  . We have thus seen that in vacuum, Maxwell’s equations imply vector 

wave equations for the electromagnetic field. This means that, in vacuum, we can apply all theo-

rems on the three-dimensional wave equation to the electromagnetic field; for instance, all elec-

tromagnetic signals necessarily travel with the constant speed  . But don’t be fooled – there is no 

equivalence between the full set of Maxwell vacuum equations (MW1-MV4) and these two wave 

equations. It is easy to see that this cannot be so. Indeed, the wave equations are perfectly sym-
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metric in   and  , but the Maxwell vacuum equations (MV2) and (MV3) are not, because 

       . 

Let us now investigate a general plane-wave solution of the Maxwell vacuum equations. We will 

postulate a monochromatic plane-wave   field and investigate the requirements on   and   im-

posed by the vacuum equations in this case. To this end, choose a (constant) amplitude vector 

  , a (constant) angular frequency  , and a (constant) wave vector   and set 

 (   )       (      ) 

which is a monochromatic wave travelling in the direction of   with phase speed   ⁄ (   ) 

where   
2 

 
 is the wavelength and   

 

2 
 is the (ordinary) frequency. In this case (W1) reads 

  2 (   )    2 2 (   ) 

and is clearly satisfied iff     ⁄ . Hence, the constant    √    ⁄  in the wave equations is in-

deed equal to the phase speed   ⁄  of the plane electric wave. But what about the original vacuum 

equations? Now (MV1) reads 

 (    )    (      )               

and, consequently, it implies 

      

The third vacuum equation, (MV3), reads 

(    )    (      )   
  

  
  

Therefore, 

 (   )  
 

 
(    )    (      ) +  ( ) 

for some purely spatial function        . Now, define (the constant) 

   
 

 
(    ) 

as22 to obtain 

 (   )       (      ) +  ( ) 

where 

            

The vacuum equations do not demand that  ( )    in all space; the only requirements on this 

term are that it is solenoidal (that is, divergence-free) and irrotational. The divergence-freeness 

follows immediately from (MV4) by linearity of the divergence operator and the fact that     . 

The fact that  ( ) is irrotational follows from (MV2), as we will see in a moment. These are the 

only requirements on  ( ); any such field  ( ) will work with the vacuum equations. In particu-

lar, any constant vector field  ( ) is admissible. 

The static field  ( ) is to be interpreted as the magnetostatic background field. Indeed, in the case 

of a plane, monochromatic EM wave in an earthbound laboratory, 

                                                             
22 Notice that we may write 

 

 
(    )  

 

 
( ̂    )  

 

 
( ̂    ) where  ̂  

 

 
 . 
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 (   )       (      ) 

 (   )       (      ) +  ( )  

where  ( ) is the magnetic field of the Earth, which locally is constant to an excellent approxima-

tion. We can thus decompose the magnetic field into two parts:      (      ) which is the 

magnetic wave required to accompany the postulated electric wave      (      ), and a 

static background part  ( ), which is not to be considered as a part of the EM wave. While study-

ing the EM wave, therefore, we neglect the background field, and so we set  ( )   . [Neverthe-

less, we will keep including a shaded term  ( ) in the equations to follow just to motivate the 

promised result    ( )   .] 

Now, let us move on. (MV2) gives 

(    )    (      ) +    ( )      
  

  
  

But   is known, so 

(    )    (      ) +    ( )            (      )  

In addition, 

   
 

 
(    )       

 2

 
   

and so 

 2

 
     (      ) +    ( )            (      ) 

or 

(
 2

 2
      )     (      )     ( )  

Recalling that  ( )   , we thus regain the result 

 2

 2
      

2        

On the other hand, if we consider the static field  ( ) [that is, stop neglecting it!], and recall that 

the above relation already has been established, then it follows that  ( ) is irrotational, as prom-

ised. As indicated above, any constant field  ( ), such as the locally constant earthly magnetic 

field, is solenoidal and irrotational, and thus provides a concrete illustration of the static back-

ground field. 

Conversely, if we had begun by postulating a monochromatic, plane-wave, magnetic field, then 

we would have obtained a solenoidal and irrotational electrostatic background field term, in 

addition to the electric wave that needs to accompany the magnetic wave, that is 

 (   )       (      ) +  ( ) 

 (   )       (      )  

Now, a vector field  ( ) that is both divergence-free and irrotational is called a ‘Laplacian’ vector 

field. Because it is irrotational, it is a potential field, and thus the gradient of a scalar potential 

 ( ). But since    ( )    (  ( ))   2 ( )   , the potential is harmonic. That is, the static 
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background field has to be the gradient of a harmonic function. But this is exactly what we would 

expect, because the electrostatic potential is harmonic (in vacuum)! 

In any case (postulating a plane-wave electric field or postulating a plane-wave magnetic field), 

the background term needs to be static; it may not vary in time. This is because of the interac-

tions between the electric and magnetic fields. Indeed, a time-varying magnetic field would af-

fect the electric field (which we have already fixed), and, conversely, a time-varying electric field 

would affect the magnetic field. 

To summarize, we have found that: 

 Maxwell’s equations admit plane electromagnetic (EM) waves. 

 A plane   field wave must be accompanied with an equally plane magnetic   field wave 

(and vice-versa). These waves are oscillating in phase. 

 A plane EM wave must be transversal, i.e.      and     . That is, the   and   fields 

are always perpendicular to the wave vector. 

 The electric field (wave) is perpendicular to the magnetic field (wave), i.e.      . 

 An electromagnetic wave has the constant phase speed 
 

√    
  From now on, we will de-

note this speed of light by the symbol   . This is equal to the constant in the wave equa-

tions (W1-W2) for the electromagnetic field. 

      . [This follows from    
 

  
( ̂    ).] 

Maxwell’s theory thus gives an explicit formula for the speed of an electromagnetic wave in 

terms of fundamental physical quantities. Around 1862, one knew the speed of light to a reason-

able accuracy, and one noticed that it was rather close to the (also known) numerical value of 

 √    ⁄ , which, combined with the newly published Maxwell theory, strongly suggests that 

light is in fact an EM wave, and during the years to come, all doubt was removed: Light is an elec-

tromagnetic wave!  

2.5.1 The ‘Speed’ of Light 

Let’s resolve a minor difficulty that many texts simply pretend doesn’t exist [many texts also 

‘forget’ to motivate why one should set the constant of integration  ( )    above]: As we have 

seen,     √    ⁄  is the phase speed of light. However, it wasn’t the phase speed of light that 

was known (approximately) in 1862; instead, it was the speed of propagation of an electromag-

netic signal. This is the constant   in the wave equations (W1)-(W2), but, again as we have seen, 

this is equal to the phase speed   . 

Indeed, the wave equations (W1)-(W2) are satisfied in all of (empty) space, and so the electro-

magnetic field has to satisfy them both ‘inside’ a beam of light, and in the surroundings. But it is a 

fundamental theorem on the three-dimensional wave equation that any signal travels at the 

speed  , no more and no less. More precisely, we have 

Theorem 6 

Let  (   ) be a scalar field in space-time satisfying the wave equation      
2 2    every-

where and the initial conditions  (   )   ( ) and   (   )   ( ). Then 
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 (   )  
 

   2 
∬ ( )  
 

+
 

  
[
 

   2 
∬ ( )  
 

] 

where   {      |    |    }. 

The proof of this theorem can be found in (Walter, 2008, pp. 234-238). Notice that the solution 

at any given point (   ) only depends on the value of the initial conditions a distance    away 

from the point. That is, information about the initial conditions travels at the speed  . Since the 

EM field at any particular moment of time can be used as the initial conditions in the problem of 

finding the field at later times, it follows, for instance, that a beam of light has to travel with pre-

cisely the phase speed    of the electromagnetic wave. 
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2.6 Inconsistencies with Classical Mechanics 

2.6.1 The Speed of Light 

Let   be an observer standing at rest on the ground of the Earth, and let   be a passenger in a 

space ship travelling with velocity   with respect to   and the ground. Imagine that   fires a 

cannon ball in his direction of motion. Relative to   and the space ship, the velocity of the can-

non ball is  . According to  , of course, the velocity of the cannon ball is  +  , and the speed 

 +    . This is self-evident from a Newtonian point of view. 

Now, let   fire a laser gun instead. According to  , the laser beam travels with speed   . There-

fore, classically, one would expect   to observe the beam travelling with a slightly higher speed, 

namely  +   . Of course, since     , we have  +       and the difference is barely detecta-

ble, if at all – but it is there. Nevertheless,   knows electrodynamics, and Maxwell’s equations are 

very clear: relative to  , the beam has to travel with speed   , no less and no more. 

The reader might think this is not a fundamental problem simply because light is profoundly 

different from matter, e.g. from a cannon ball. Nevertheless, it is! Later on, when introducing the 

special theory of relativity, we will see exactly how fundamental a problem this is; the ramifica-

tions are overwhelming. Of course, since    is such a great number, the discrepancy between the 

classical expectations and the real case is most often invisible to us. But at high speeds, when 

     ceases to be valid, so does  +      , and all the strange effects of special relativity re-

veal themselves. 

On a historical note, the difficulty associated with the constant speed of light as predicted by 

Maxwell’s equations was known from the beginning. The suggested ‘solution’ was that there 

existed a preferred frame of reference, and that Maxwell’s equations were only exactly valid in 

this frame. This preferred frame was supposed to be the frame in which the ‘ether’ was at rest. In 

other words,    was the speed of light relative to the ‘ether’, and an observer not at rest relative 

to this mysterious ‘ether’ would measure a different speed of light, in accordance with the classi-

cal ‘common sense’. Since the Earth moved through the ‘ether’, it would have been possible to 

detect the slight change of the speed of light during the year. The most famous experiment at-

tempting to detect this variation was the Michelson-Morley experiment of 1887 (Tipler & 

Llewellyn, 2008). No variation was detected, however. Today the ‘ether’ hypothesis is (almost) 

completely abandoned. 

2.6.2 The Galilean Transformation 

The abnormal constancy of the speed of light is perhaps the most intuitive case against the com-

bination Maxwell + Newtonian Mechanics. On a less intuitive note, a severe theoretical problem 

with the same combination is that Maxwell’s equations are not invariant under Galilean trans-

formations. That is, if Maxwell’s equations are valid in a physical frame ℘ℱ1, then they are not 

necessarily valid in any other physical frame ℘ℱ2! This, of course, is a major problem. Indeed, if 

Maxwell’s equations are valid in at most one physical reference frame, then, the odds that they 

are valid in your laboratory frame are practically zero. We now wish to prove this. The simplest 

way is perhaps to employ a proof by contradiction. 

Let ℱ1 ∈ ℘ℱ1 be a system at rest relative to the laboratory (the unprimed system). Let there be 

a stationary wire with constant charge density     [C/m] along the   axis carrying no electric 

current. Place a test charge     a distance     below the wire, as in Figure 27. Let ℱ2 ∈ ℘ℱ2 

be a system with the same basis vectors but moving with velocity     ̂  relative to ℱ1. 
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Figure 27. A charge below a wire. 

Assume that the electric and magnetic fields are (   ) and (     ) in ℱ1 and ℱ2, respectively. 

Further, assume that Maxwell’s equations are valid in both frames. In ℱ1, (M1) yields 

   
 

     
 ̂  

at the test particle. (M2) and (M4) state that the magnetic field is a Laplacian vector field. But 

(M3) requires more than that: since the electric field is irrotational, the magnetic field has to be 

constant in time. Let us assume that there is no constant background field, that is, set     

identically. Therefore, all things considered, the charge will experience the force 

     

and it will obtain an (instantaneous) acceleration 

  
 

 
  

 

 
   

  

      
 ̂   

Now, according to an observer in ℘ℱ2, the wire carries a constant current       which corre-

sponds to a scalar current of   | |    . Therefore, in addition to the electrostatic field 

    
 

     
 ̂2 

given by (M1), there is also a static (because of (M3)) non-vanishing magnetic field, given by 

(M2), namely 

   
   

   
 ̂2  

In addition, since the test charge is moving with velocity    with respect to ℘ℱ2, it will be af-

fected by this magnetic field, and so the charge will experience the total Lorentz force 

      +  (  )     

and thus the (instantaneous) acceleration 

   
 

 
   

 

 
   

 

 
      

  

      
 ̂2  

 

 
  ̂2  

   

   
 ̂2   

  

      
 ̂2 +

     

    
 ̂2  

  
  

      
(   2    ) ̂2   +

   2  
    

 ̂2 

But since ℱ1 and ℱ2 are both inertial frames,      as geometric vectors (and in this case the 

components have to agree, too). Therefore,    2    . But since    ,    , and     [and, 

of course,     ], this is a contradiction. 

ℱ1 

�̂�  �̂�  

�̂�  

𝑂  

ℱ2 

�̂�2 �̂�2 

�̂�2 

𝑂2 

𝐯 

𝑞 
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What have we shown? We have shown that, if Maxwell’s equations are valid in one inertial 

frame, they are not valid in ‘any’ [at least not every] other such frame. But since common sense 

requires all inertial frames to be equivalent (since it is highly dubious to think that the frame of 

one’s personal laboratory is a God-given frame of magic), we have thus shown that Maxwell’s 

equations cannot be the truth [unless there is something very strange going on]. Einstein, however, 

was brave enough to question the ‘common sense’. He based his special theory of relativity on 

the assumption that Maxwell’s equations are in fact valid, and that it is the common-sense Gali-

lean transformation that is at fault. Indeed, as we shall see below, when one considers relativistic 

effects such as time dilation and length contraction, Maxwell’s equations will be equally valid in 

any inertial frame. 

Exercise: Motivate why the discrepancy illustrated above is very small in a typical 

every-day experiment. 
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3 Special Relativity 

 

 

 

Figure 28. The ‘Light Cone’, which we will introduce in this 
chapter, is perhaps the most important visual aid in under-
standing the geometry of flat spacetime. 
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3.1 Time Dilation 

Contemporary texts on special relativity tend to base the introduction on the so-called ‘ -

calculus’. Examples include (d'Inverno, 1992) and (Ludvigsen, 1999). This is probably a clear 

and stringent approach. The current author, however, feels that this approach obscures the 

physical insights that underpin special relativity, and will therefore present the subject in a more 

classical manner. For the remainder of this chapter, a physical reference frame is assumed to be 

inertial, unless the (possibility of the) opposite is stated explicitly. 

Let ℘ℱ2 be a high-speed aeroplane in which we use a mathematical frame ℱ2. Let there be a 

combined light emitter/detector E/D positioned at the floor, and a mirror M on the ceiling right 

above E/D. Let the height of the cabin, or, more precisely, the distance between E/D and M, be 

   . Suppose that the emitter emits a light beam at time     . The beam will reflect in M and 

be detected by the detector at a later time      , that is,    is the length of time that pass be-

tween the emission and the detection of the beam, as measured inside the aeroplane [‘ ’ as in 

‘aeroplane’]. Since light travels with the constant speed    and the total distance travelled is   , 

this duration is        ⁄ . 

On the other hand, according to an observer stationary with respect to the ground ℘ℱ1 [mathe-

matical system ℱ1], the aeroplane travels (horizontally) with speed    . Again, let the beam be 

emitted at time    , and let the detection happen at time     , according to the stationary 

observer [‘ ’ as in ‘ground’]. During this time, the emitter/detector E/D has moved a distance 

     . Therefore, as perceived by this observer, the beam of light has travelled along two of 

the sides of an isosceles triangle with height   and base  , as in FIG. 

 

Figure 29. A beam of light in a moving aeroplane. 

Classically, we would say that the speed of the light beam has increased; indeed, the velocity still 

would have a vertical component   , but also a new, horizontal, component  , so that the speed 

would have increased to √  
2 +  2    , even though the difference would be very small even for 

a high-speed aeroplane. But according to Maxwell’s equations, the speed of light is   . Period. 

Therefore, the stationary observer will find that the beam has travelled a distance23 

   √(
   

2
)
2
+  2 with constant speed   . Consequently, the elapsed time satisfies 

                                                             
23 We assume that both observers agree on the distance between the emitter and detector being equal to 
 . Notice that the displacement vector between the emitter and detector is perpendicular to the velocity of 
℘ℱ2 relative to ℘ℱ1. [Later on we will see that distances with a non-zero component in this later direc-
tion are dependent upon the observer due to ‘length contraction’.] All experiments agree on the fact there 

  

E D 

Time 

𝐷  𝑣𝑇𝐺  

M 
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√(
   
 
)
2

+  2  

Notice that an observer in the aeroplane ℘ℱ2 and an observer stationary with respect to the 

ground ℘ℱ1 disagree on how much time that elapsed between the emission and the detection of 

the light beam [if you don’t see this, notice that    clearly depends on  , while    does not]! 

Clearly, this classical ‘absurdity’ steams from the ‘absurd’ constancy of the speed of light be-

tween different inertial frames of reference. 

But if we are to believe in the validity of the Maxwell equations, and, in addition, not be tem-

pered to restrict the validity of the equations to any ‘preferred’ frame of reference, then, time is 

not an absolute thing. 

This forms the basis of special relativity. In fact, Einstein postulated 

Einstein’s Postulates of Special Relativity24 

1) Every inertial frame of reference is equivalent to any other inertial frame of reference. Any 

pair of inertial reference frames is characterized by their relative speed. 

2) Contrary to classical expectations, in any inertial reference frame, the speed of light is   . 

As we have seen, these postulates imply that the ‘rate of time’ is dependent upon the observer. 

We will now solve (↑) for   . Some simple algebra yields 

   
 

  
√(
   
 
)
2

+  2    
2  

 

  
2 (
 2  

2

 
+  2)    

2 (  
 2

  
2)  

  2

  
2   

Since   
2    and   2   

2⁄   , we must have    2   
2⁄   . Therefore, Einstein’s postulates 

inevitable requires 

      

in other words, the speed of an aeroplane, as measured from the ground, is forbidden to equal or 

exceed the speed of light! Recalling that        ⁄  we end up with 

    ( )   

where the Lorentz factor 

 ( )  
 

√  
 2

  
2

   

essentially forms the quantitative basis of special relativity. We remark that  ( ) is very close to 

unity for all every-day speeds25, and so Newtonian mechanics is an excellent approximation in 

these cases. However, for high-speed particles, the speed of which might come close to the speed 

                                                                                                                                                                                              
is no length contraction perpendicular to the direction of motion. In addition, there is no theoretical ‘need’ 
for any, either. 
24 The sentence starting ”Any pair of inertial frames…” is the invention of the current author, who feels 
that this is an implicit assumption that is worth making explicit. 
25 You have to sit down and compute  ( ) for some different   [    [ to get a feeling for it. 
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of light, the relativistic effects become quite apparent. In fact,  ( )    as     , subtly re-

minding us that there cannot be any speed greater than the speed of light. 

The physical phenomenon that the ‘rate of time’ is not absolute is called time dilation, and – quite 

apparently – is characterized by the fact that moving clocks tick more slowly than stationary 

clocks. Very concretely: Suppose that you have two atomic clocks that you synchronize, and that 

you keep one of them stationary at the ground while the other is placed in a high-speed orbit 

around the Earth for a few laps.26 Then you bring it back to the stationary clock, and you com-

pare their readings. You will find that the clock that has been in orbit will have recorded fewer 

ticks than the clock that has remained stationary.27 This has been verified by experiments using 

atomic clocks.28 

We wish to make the notion of time dilation more precise. To this end, we consider two frames 

of references, ℱ1 and ℱ2. Let ℱ1 be an airport on Earth, while ℱ2 is a spaceship. Assume that, at 

the origin of each, there is an observer carrying a clock. Assume that the spatial origins of ℱ1 and 

ℱ  coincide at some time, that is, the spaceship is standing by on the airport at this time. Assume 

also, that the spaceship is set on a journey to interstellar space, and then returns to Earth after 

some time. At this time, the spatial origins of ℱ1 and ℱ2 once again coincide. The observer at-

tached to the ground (ℱ1) will say that the ship was away for some time   , while the observer 

onboard the ship will say he was away for some time   . 

The clock onboard the ship is measuring the proper time of the ship (ℱ2), while the clock on the 

airport is measuring the proper time of the airport (ℱ1), where we have used 

Definition NN 

The proper time of an observer is the time displayed by a clock always carried with the observer. 

In particular, this means that the clock is always at rest relative to the observer, and that the 

clock is always at the same place as the observer. 

                                                             
26 This seemingly simple thought experiment is deceptively complicated, for neither the reference frame of 
the ground nor the frame of the orbiter is an inertial frame. Let us assume that this is not a problem. Then, 
since the Earth is rotating around its axis, anticlockwise as seen from above the North Pole, a point on the 
Earth’s equator is moving with speed      to the east, where     is the equatorial radius of the 
Earth, and     is the angular velocity. Thus, a point on the equator will experience time dilation relative 
to the inertial ambient space because of the spinning of the Earth itself! In addition, if an equatorial aero-
plane is travelling eastwards with speed     relative to the ground, then it will suffer from an even 
stronger time dilation than a fixed point on the equator. Indeed, relative to the inertial ambient space, its 
speed is   +  . On the other hand, if the aeroplane is travelling with speed   ]     [ to the west, it 
will compensate for the Earth’s rotation, and will experience a smaller effect of time dilation as compared 
to a fixed point on the equator, everything as perceived by the inertial observer above the North Pole. 
27 In this sentence, where we state that the aeroplane will suffer from a greater time dilation than a fixed 
point on the ground, we assume that it is either travelling to the east, or is travelling to the west with a 
speed      . Simply put, we say that the aeroplane is travelling with high speed as compared to the 
rotation of the Earth, which we want to neglect. At any rate, isn’t there a problem that both the clock on 
the fixed point on the equator and the clock inside the aeroplane are accelerating? Maybe. But experi-
mental verification tells us that this acceleration does not invalidate the effects of time dilation. And, clear-
ly, you can device thought experiments that involve no circular motion at all, if you wish. 
28 In October 1971, four caesium beam atomic clocks were flown around the world in commercial jet air-
crafts, both eastwards and westwards. They recorded time dilation effects, opposite in the two directions, 
to a high degree compatible with the predictions of special (and general) relativity. The results were pre-
sented in (Hafele & Keating, 1972) and (Hafele & Keating, 1972). 
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The proper time of a mathematical frame of reference is the proper time of an observer always 

sitting at the spatial origin of the frame. In particular, this means that the clock, carried by the 

observer, is always at rest relative to the frame, and has always the same spatial coordinates 

with respect to it. 

Let us now formulate a precise result on time dilation: 

Proposition 7 

Assume Einstein’s postulates. Consider two inertial physical frames ℘ℱ1 and ℘ℱ2 with relative 

speed  . Let    be the duration, as measured in ℘ℱ2, of a process, the starting and ending events 

of which occur at the same spatial coordinates in any chosen mathematical frame ℱ2 ∈ ℘ℱ2. 

Then 

   ( )   

is the duration of the process as measured in any system ℱ1 ∈ ℘ℱ1. 

This is what we proved above, but the hypothesis can be slightly weakened: 

Proposition 8 

Let ℘ℱ1 and ℘ℱ2 be any inertial physical frames with relative speed  . Choose mathematical 

frames ℱ1 ∈ ℘ℱ1 and ℱ2 ∈ ℘ℱ2 in standard configuration [that is,     ̂]. Let ℰ1 and ℰ2 be 

two events with the same   coordinate in ℱ2. Let   and    be the duration of time passing be-

tween the events as measured in ℱ1 and ℱ2, respectively. Then    ( )  . 

Proof 

Let ℱ1 ∈ ℘ℱ1 (the ground) and ℱ2 ∈ ℘ℱ2 (an aeroplane) be in standard configuration with rel-

ative speed  . Let there be a photon emitter at some point inside the aeroplane, and a detector a 

distance     from the emitter, but at the same   coordinate. Let ℰ1 and ℰ2 be the emission and 

detection events, respectively. As seen inside the aeroplane, the photon travels a distance   with 

speed   ; thus, the duration between ℰ1 and ℰ2 is       ⁄ . As seen from the ground, the dis-

tance is √ 2 + (  )2, because, being a displacement perpendicular to the relative velocity,   is 

the same; thus, the duration between ℰ1 and ℰ2 is     
  √ 2 + (  )2 , which is solved to yield 

   √  
2   2⁄ . Therefore, 

 

  
 

 

√  
2   2

 
  
 
  ( ) 

as promised. ∎ 

We cannot, however, remove the hypothesis on the events entirely: 

Observation 9 

       x            ( ℱ    ℱ )    inertial physical frames with relative speed   and a pair 

(ℰ   ℰ )                                    between the events as measured in  ℱ  and the du-

ration    between the events as measured in  ℱ  satisfy 

   ( )    



ANDREAS REJBRAND D R A F T  http://english.rejbrand.se 

 109/314 

Proof 

Choose two mathematical frames ℱ1 ∈ ℘ℱ1 and ℱ2 ∈ ℘ℱ2 in standard configuration. Emit a 

photon at time        at the common origin in the  ̂  direction. This is the initial event ℰ1. 

Let there be a detector at coordinates ( ̃     ) inside the ship (relative to ℱ2). Let the photon be 

detected at time     ̃  (relative to ℱ2). Thus, the detection event has coordinates ( ̃   ̃     ) in 

ℱ2; this is the final event ℰ2. According to an ℱ1-bound observer, at the time    ̃ of detection, 

the detector is found at coordinate  ̃. Thus, the coordinates of ℰ2 are ( ̃  ̃    ) relative to ℱ1. 

Notice that the lifetime of the photon, or the duration of the process with initial and final events 

ℰ1 and ℰ2, is  ̃  relative to ℘ℱ2 and  ̃ relative to ℘ℱ1. Notice also that Proposition 8 does not 

apply since the   coordinates of ℰ      ℰ  differ in ℘ℱ2. Assume that  ̃   ( ) ̃  anyway. Since 

the speed of light is    in both systems, 

 ̃

 ̃
 
 ̃ 

 ̃ 
    

which, since  ̃   ( ) ̃ , implies 

 ̃   ( ) ̃  

independent of  , which is absurd [think about the case  ( )  ]. Therefore,  ̃   ( ) ̃ . ∎ 

We end this subsection with a simple observation. 

Observation NN 

Inside any given, inertial, physical frame ℘ℱ of reference, time is absolute. To see this, imagine 

that, at every point in space, there is an observer, carrying a clock, at rest relative to ℘ℱ. These 

observers can, at any time, synchronize their clocks in a very simple way. First, they need to de-

cide on a ‘team leader’, and then every team member will need to determine his distance   from 

the team leader. This can be done by means of a ruler, in principle. Now, to synchronize the 

clocks, the team leader resets his clock at the same time as he emits a flash of light in every di-

rection. Each team member will see this flash at some later time, and when he does, he resets his 

clock. To compensate for the light travel time, he then subtracts an amount of    ⁄  seconds from 

his clock. Now all clocks are synchronized. 

Consider now any two events, ℰ1 and ℰ2. At the spatial position of ℰ1, fortunately, there sits a 

team member, who makes a note about the current time of the event, according to him. He can 

then ‘broadcast’ this timestamp, that is, emit an electromagnetic signal encoding it, which will be 

seen by all other observers. The same applies to ℰ2. 

This way, any observer in ℘ℱ can measure the duration   between any pair of events. In addi-

tion, it should be clear that, if some other observer in ℘ℱ does the same and obtains the value   , 

then     . 

3.1.1 Non-Inertial Frames 

Of course, a general reference frame is not inertial. Still, Definition NN applies: even if a clock is 

accelerated, it will tick, so the term ‘proper time’ is well-defined. We will assume that no new 

strange physical effect reveal itself when a clock is accelerated. Using this assumption, some-

times called the ‘clock hypothesis’, we may approximate a journey with a smooth but non-

constant velocity function by a journey with a piecewise constant velocity function. 
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To make this precise, let ℱ1 be an inertial frame, and let ℱ2 be the frame of a spaceship, not nec-

essarily accelerating. We will use   to denote proper (or ‘coordinate’) time in ℱ1, and   to denote 

proper time of ℱ2. We wish to find the relation between   and   at any time inside some arbi-

trary interval [     ] of ℱ1 time. To this end, we use the clock hypothesis and partition the inter-

val [     ] on the ℱ1 coordinate time axis into   small parts    [     ],  2  [    2], …, 

   [       ] where                     . Introduce     x      (  ) where 

 ([   ])      as a measure of the fineness of the partition. 

Let  ( ) denote the relative speed between the frames at time   relative to ℱ1. Consider some 

interval    of time,      . In this interval, the relative speed (and velocity) is, assuming   is 

small enough, essentially constant, namely,  (  ). Let     be the increase in the proper time of 

ℱ2 in this interval of ℱ1 time (so that, classically,      (  )). Then, using Proposition 7, which 

holds inside this interval since (1) ℱ2 has constant relative velocity relative to an inertial frame 

and thus is inertial itself in this interval of time, and since (2) the clock at the origin of ℱ2 has 

constant spatial coordinates relative to ℱ2, 

    
 

 ( (  ))
 (  ) 

and, therefore, 

  ∑   

 

   

 ∑
 

 ( (  ))
 (  )

 

   

  

But the error should (this is the ‘clock hypothesis’) tend to zero as    . Thus, 

  ∫
 

 ( ( ))
  

  

  

 

and we have proved 

Proposition NN 

Let ℱ1 be an inertial frame, and let ℱ2 be any frame (inertial or not). Let the speed of ℱ2 relative 

to ℱ1 be  ( ) at proper time   relative to ℱ1. Then an amount 

  ∫
 

 ( ( ))
  

  

  

 

of proper time is measured in ℱ2 between times    and    relative to ℱ1. 

 

Corollary NN 

Let ℱ1 be an inertial frame, and let ℰ1 and ℰ2 be two events both taking place at the spatial 

origin of ℱ1. Let ℱ2 be any frame of reference, only restricted by the requirement that ℰ2 and ℰ2 

both should take place at the origin of ℱ2, too. Let   and   be the proper times spent between the 

two events, relative to ℱ1 and ℱ2, respectively. Then 
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Proof 

Let ℱ1 and ℱ2 be as in the corollary. Let the time coordinates of ℰ1 and ℰ2 be    and  2, respec-

tively, relative to ℱ1, where  2    . Thus, ℱ1 finds the proper time between the events to equal 

 2    . But, using Proposition NN, an amount of proper time 

  ∫
 

 ( ( ))
  

  

  

     2 

will pass between ℰ1 and ℰ2 relative to ℱ2. ∎ 
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3.2 Length Contraction 

Suppose that a spaceship makes a journey along the straight line from the Earth to Vega. For 

simplicity, we assume that the ship travels with constant speed   relative the galaxy [or some 

other suitable ‘background’]. An observer at rest relative to the galaxy will measure the time    

of the entire journey, which he observes has length       , but the captain of the ship will 

experience a smaller duration of the flight, namely,    
 

 ( )
     , according to Proposition 7. 

[The spatial coordinates of the captain’s chair are the same at both the start and the end of the 

journey relative to the ship.] In addition, since the captain and the earthbound observer agree on 

their relative velocity being  , the captain must conclude that he has only travelled a distance 

        
 

 ( )
    

 

 ( )

  
 
 

 

 ( )
       

Hence, the captain observes that the galaxy shrinks as he zooms across it! This is length contrac-

tion. The length of an object thus depends upon the observer. The greatest length of an object is 

called its proper length and is measured in the rest frame of the object. 

There is a rather beautiful combined illustration and physical verification of the phenomena of 

time dilation and length contraction, namely the journey of muons through the Earth’s atmos-

phere. Muons are formed at high altitude by particle reactions initiated by cosmic rays.29 How-

ever, the altitudes we are talking about are in the order of magnitude of several thousand meters 

above sea level, and the mean lifetime of a muon is only about 2 µs. Hence, a typical muon with a 

speed of           (Tipler & Llewellyn, 2008) would only survive for some 600 meters. There-

fore, classically, a muon reaching the ground should be a very rare event, something worth cele-

brating by a huge party, really.30 

However, the particle will experience very strong relativistic effects due to its high speed. [For-

mally, let ℘ℱ1 be the ground, and ℘ℱ2 the rest frame of a muon, in which the muon is at rest; in 

particular, the muon has constant spatial coordinates in any frame ℱ2 ∈ ℘ℱ2.] The Lorentz fac-

tor  ( )    , which is really huge. In fact, 2 µs of the muon’s time corresponds to 32 µs Earth-

time. In 32 µs, a particle of speed           will travel a distance of 9.5 km! Hence, many mu-

ons should make it to the ground! On the other hand, from the muon’s point of view, it does only 

live a mere couple of microseconds. However, the distance from the point of creation in the up-

per atmosphere to sea level is reduced by length contraction by a factor of   ( )⁄  
 

  
; that is, if 

the distance to the ground is 9.5 km, the muon will only ‘feel’ that the distance is 600 meters. 

Physical experiments have confirmed that the observed rate of decay of muons do indeed de-

pend on their speed; see, for instance, (Rossi & Hall, 1941). Many other experiments have also 

confirmed the predictions of special relativity. In fact, special relativity is used daily in applied 

physics and in every-day consumer electronics. Hence, today, special relativity is a very well-

established theory. 

We will make the spatial analogue of Definition NN: 

                                                             
29 When cosmic-ray protons hit atmospheric atomic nuclei, pions are created. Very soon (within meters), 
these decay into muons and neutrinos. (Wikipedia contributors, 2011) 
30 If you plan to serve Coca-Cola at the party, please make sure that the temperature of this beverage does 
not exceed the upper limit of 4°C. [And, of course, it has to be served in liquid form at approx. 1 atm. at-
mospheric pressure.] 
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Definition NN 

The proper length of an object is the length of the object as measured in the rest frame of the 

object. 



 Physics Done Right, an Attempt 

 114/314 

3.3 The Lorentz Transformation 

Let ℘ℱ1 and ℘ℱ2 be two physical frames of reference [think of the ground and a spaceship, re-

spectively], with relative speed  , and choose two mathematical frames in standard configura-

tion, ℱ1 ∈ ℘ℱ1 and ℱ2 ∈ ℘ℱ2.  

We want to find the relativistic transformation that supersedes the Galilean transformation (↑); 

let’s call it  . Thus, if (       ) are the coordinates of some event relative to ℱ1, and if 

(           ) are the coordinates of the very same event according to an observer in ℱ2, then 

 (       )  (           )  

Just like the case of the Galilean transformation, this transformation has to be linear, and it is 

given by 

Theorem 10 

The relativistic transformation          of the coordinates of an event between two frames 

with relative speed   in standard configuration is 

    ( ) (  
  

  
2) 

    ( )(    ) 

     

     

where  ( )  (   2   
2⁄ )  2⁄  is the Lorentz factor. 

Proof 

Let ℱ2 be a cubic spaceship with the origin somewhere on the rear side. Fix a point   inside the 

ship, at coordinates ( ̃     ) in ℱ2. Assume that a photon is emitted in the  ̂  direction at the 

common origin at time     , and that this photon has reached the detector at   at time     ̃ . 

Thus, in ℱ2, the coordinates of the detection event are ( ̃   ̃     ). Assume that the detection 

occurs at time    ̃ in ℱ1. According to an ℱ1-bound observer,   is then located at position 

 ̃    ̃ +
 

 ( )
 ̃  

because the ship has travelled a distance   ̃ and the proper distance  ̃  between the emitter and 

detector inside the ship is contracted by a factor of    ( ). But this is a part in the sought trans-

formation, namely 

 ̃   ( )( ̃    ̃)  

Now31, since ℱ1 moves with ‘speed’    relative to ℱ2, the inverse transformation has to include 

 ̃   ( )( ̃ +   ̃ )  

Solve for  ̃  in this last equation and equate the expression with the forward transformation to 

obtain an equation in  ̃ and  ̃  which is solved with respect to  ̃  to obtain 

                                                             
31 At this point, it is tempting (wrongly) to ‘deduce’  ̃   ( ) ̃  since  ̃  is the ‘lifetime’ of the photon in ℱ2 
and  ̃ is the ‘lifetime’ in ℱ1, and there should be time dilation. By doing so, one ‘derives’ an incorrect ‘Lo-
rentz transformation’. Where lies the fault in this reasoning? 
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 ̃  
 

 ( ) 
 ̃  

 ( )

 
 ̃ +   ( ) ̃   ( ) ̃  

 ( ) 

  
2  ̃ 

Therefore, since   was arbitrary, and since   ‘has’32 to map      and     , we have shown 

that any ℱ1 coordinate quadruple (       ) has the corresponding ℱ2 coordinates (           ) 

given by these four relations, which thus is the sought transformation  . ∎ 

A relativistic coordinate transformation between two inertial frames with coinciding spatial 

origin at the common origin of time is called a Lorentz transformation. The transformation of 

Proposition 6 thus is the Lorentz transformation in the case of standard configuration and rela-

tive speed  . Notice that, if ℱ2 moves with speed +  relative to ℱ1, then ℱ1 moves with speed 

–   relative to ℱ2. This means that the inverse transformation is obtained simply by changing   

to –   in Proposition 6. 

Exercise: Deduce the phenomena of time dilation and length contraction from the 

Lorentz transformation alone. 

3.3.1 The Velocity Addition Formulae 

In Newtonian physics, a particle moving with velocity   in ℱ2, which in turn moves with velocity 

  relative ℱ1 will be observed to move with the (geometric) velocity  +   relative ℱ1. But then 

we saw that a light signal does not follow this law, which is frustrating. We will now derive the 

relativistic velocity addition formulae from the Lorentz transformation, and we will find that the 

(components of the) velocity of a photon transforms according to the very same set of formulae 

as ordinary matter, thus confirming the consistency, not to mention beauty, of special relativity. 

Proposition 11 

Let ℱ1 and ℱ2 be in standard configuration with relative speed   and denote by (        ) the 

components of the velocity of some particle relative to ℱ1, and let (  
    

    
 ) be the compo-

nents of the velocity relative to ℱ2. Then 

  
  

    

       
2⁄

 

  
  

  

 ( )(       
2⁄ )

 

  
  

  

 ( )(       
2⁄ )

 

where  ( )  (   2   
2⁄ )  2⁄  is the Lorentz factor. 

The asymmetry between the   direction on one hand and the   and   directions on the other 

comes from the choice of the standard configuration, where the relative velocity     ̂. 

                                                             
32 This is rather an assumption. The case is this: we have found that the Galilean transformation cannot be 
valid, and so we must device a new transformation that is valid. The most natural approach is to alter the 
Galilean transformation as little as possible and only tweak it so that all contradictions disappear. Experi-
mental verification tells us that we need no more tweaks than this. 
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Proof 

Differentiation of the Lorentz transformation (Theorem 10) yields 

     ( )   
  ( )

  
2    

     ( )     ( )   

       

       

and so 

  
  

   

   
 
 ( )     ( )  

 ( )   
  ( )

  
2   

 
      

   
 
  
2   

 

  
  
  

  
 
  
2
  
  

 
    

  
 
  
2   

  

  
  

   

   
 

  

 ( )   
  ( )

  
2   

 

  
  

 ( )  
  ( )

  
2
  
  

 
  

 ( )  
  ( )

  
2   

 

and similarly with   
 . ∎ 

Example 12 

Let ℱ1 be some inertial frame, and let ℱ2 be a spaceship travelling with speed   relative to ℱ1, 

and assume standard configuration. 

1) Assume that ℱ2 fires a cannon ball in the  ̂  direction with speed   . Let          and 

        . Classically, ℱ1 would observer the speed    +                        

of the ball. Relativistically, however, we find                using Proposition 11. 

2) Assume that ℱ2 instead fires a photon (laser beam) in the  ̂  direction with speed (of 

course)      . Classically, ℱ1 would observe the speed    +           of the photon. 

Using Proposition 11, however, we find        , as expected. 

Corollary 13 

Let ℱ1 and ℱ2 be inertial frames with relative speed      in standard configuration. Let 

    
     be any speed as measured in ℱ2. Then      . 

Proof 

   
  
 +  

 +   
    

2⁄
 
   
   

    
2
  
2   2

(  
2 +    

 )2
      

  [    ] 

so that   
     is a strictly increasing function. But   (  )     and the corollary follows. ∎ 

3.3.2 The Acceleration Transformation Formulae 

In Newtonian physics,      for any (geometric) acceleration vector. In particular, in standard 

configuration, even the components agree between the frames. In special relativity, we have 
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Proposition 14 

Let ℱ1 and ℱ2 be in standard configuration with relative speed   and denote by (        ) the 

components of the acceleration of some particle relative to ℱ1, and let (  
    

    
 ) be the com-

ponents of the acceleration relative to ℱ2. Then 

  
  

 

  ( )(       
2⁄ ) 
   

  
  

 

 2( ) (  
   
  
2 )

2   +
   

  
2 2( ) (  

   
  
2 )

    

  
  

 

 2( ) (  
   
  
2 )

2   +
   

  
2 2( ) (  

   
  
2 )

    

where  ( )  (   2   
2⁄ )  2⁄  is the Lorentz factor. 

Proof 

Differentiation of the velocity transformation (Proposition 11) yields 

   
  

 

  
2
(    )(  

   

  
2 )

 2

   + (  
   

  
2 )

  

    
  
2   2

  
2 (  

   
  
2 )

2     

 
 

 2( ) (  
   
  
2 )

2     

It is still the case that 

     ( )   
  ( )

  
2    

and so 

  
  

   
 

   
 

   

 2( ) (  
   
  
2 )

2

( ( )   
  ( )

  
2   )

 
      

  ( ) (  
   
  
2 )

2

(  
 
  
2
  
  
)

 

 
  

  ( ) (  
   
  
2 )

   

Next, we find the differential 

   
     ( )

 

  
2   (  

   

  
2 )

 2

   +
   

 ( )(       
2⁄ )
  

thus 
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2 2( ) (  

   
  
2 )

2

(   
 
  
2   )

   +
   

 2( )(       
2⁄ ) (   

 
  
2   )

 

 
   

  
2 2( ) (  

   
  
2 )

2

(  
 
  
2
  
  
)

   
  
+

   
  

 2( )(       
2⁄ ) (  

 
  
2
  
  
)
 

 
   

  
2 2( ) (  

   
  
2 )

   +
  

 2( )(       
2⁄ )2
  

Of course, the   component is found in a perfectly symmetric manner. ∎ 

3.3.3 Relativity of Simultaneity 

Let ℱ1 ∈ ℘ℱ1 (the ground) and ℱ2 ∈ ℘ℱ2 (a ridiculously high-speed train) be in standard con-

figuration with relative speed  . Assume that the train has proper length        , and that it 

passes through a barn, stationary with respect to the ground, of proper length           . 

Choose        . Then, according to an observer in ℘ℱ1, the length of the train is    ( )   

    . That is, the train fits inside the barn, so that, for a femtosecond or so, when the rear end of 

the train has just moved inside the barn, the doors of the barn can close without even touching 

the train, which is then fully enclosed by the barn. The farmer does this, and it works. 

However, from the perspective of an observer inside the train, the train has length        , 

but the barn has shrunk to a mere    ( )       . Thus, when the rear side of the train has 

just passed the left end of the barn, the front is already outside the right end of the barn, and so 

the doors cannot possible close at that time. 

This is not a contradiction. Let the train start at      and end at       in ℱ2. Similarly, let the 

barn start at     and end at      in ℱ1. Then, at time       , the rear end of the train has 

just entered the barn. Thus, the event ℰ1 when the rear door is closed has coordinates (       ) 

in both systems. In ℱ1, the front door is shut at the same time as the rear door. Thus, the coordi-

nates of the event ℰ2 of closing the front door are (        ) according to a ℱ1-bound observer, 

the farmer, say. But the Lorentz transformation, Theorem 10, then states that the coordinates of 

ℰ2, as seen by the train driver in ℱ2, are (   
 2  ( )    ( )      )  (               ). That 

is, the front door is not closed at the same time as the rear door, the train driver finds! It is 

closed ‘long’ before the rear end of the train has entered the barn at     . In fact, when the 

front door is closed, it is located 23 meters ahead of the rear end of the train, that is, an entire 

metre in front of the train! 

The above Gedankenexperiment exemplifies 

Proposition 15 

Let ℱ1 ∈ ℘ℱ1 and ℱ2 ∈ ℘ℱ2 be in standard configuration with relative speed  , and let ℰ1 and 

ℰ2 be events occurring simultaneous in ℱ1. Assume that ℰ1 has coordinates (       ) and that 

ℱ2 has coordinates ( ̃  ̃  ̃  ̃), where  ̃   , all relative to ℱ1. Then ℰ1 and ℰ2 are simultaneous 

in ℱ2 if and only if  ̃    or    . 
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Proof 

Assume the hypotheses of the proposition. Then the coordinates of ℰ1, as seen in ℱ2, are also 

(       ). In particular, ℰ1 happens at time      in ℱ2. Let  ̃  denote the time coordinate of ℰ2 

relative to ℱ2. Then ℰ1 and ℰ2 are simultaneous in ℱ2 if and only if  ̃    , that is, iff  ̃   . As 

seen from the Lorentz transformation (Theorem 10),  ̃     ̃    ̃   
2⁄ . But  ̃    so that this 

is equivalent to ( ̃   )  (   ). ∎ 

A well-known Gedankenexperiment illustrating the relativity of simultaneity directly from Ein-

stein’s postulates concerns a railway vehicle moving at high speed across a platform. At the very 

centre of the car, a person simultaneously emits one flash of light in the forward direction and 

one in the reverse direction. According to this person, the two walls of the car are hit by the light 

simultaneously. However, according to an observer at rest on the platform, the speed of light is 

still    in both directions. Therefore, since the speed of light is finite, and the train is moving for-

wards, this observer will notice that rear side of the car is hit by the light before the front side is. 
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3.4 Dynamics in Special Relativity 

In this section, we will discuss the dynamics of special relativity, particularly the concepts of 

momentum, force, and energy. In the next chapter, we will develop a more beautiful version of 

the dynamics using four-vectors on spacetime, but for now, we will still treat space and time in a 

more classical manner and rely only on three-component spatial vectors. 

3.4.1 Rest Mass 

By the ‘mass’ of an object, we mean the mass as measured in the rest frame of the object. Defined 

this way, the mass, also called the invariant mass, or the rest mass, is the same in every frame of 

reference. Self-evident or not, this is worth pointing out, since the related concept of relativistic 

mass is sometimes used instead, and this quantity is frame-dependant. We will return to this 

subject later. 

3.4.2 Momentum 

We will now investigate momentum in relativity. Of course, in any given inertial physical frame 

℘ℱ, we could determine the rest mass and velocity of a particle (or system of particles), and 

compute ∑    . Then we could call this the ‘momentum’ of the particle (or system). However, 

the concept will only be useful in special relativity if it is a conserved quantity here as well. So, is 

it? In relativity, Newton’s laws are not postulates, and so there is no guarantee that the quantity 

is conserved. In fact, we will show that, in general, it is not. 

Let us consider the simplest example of an inelastic collision we can imagine. [There is no ‘sim-

ple’ example of an elastic collision that is interesting to us right now, for the reason given below.] 

Let A and B be two identical billiard balls of mass   with velocities      ̂ and       ̂, re-

spectively, about to collide at the origin, everything as seen from an inertial frame ℘1 ∈ ℘ℱ1. We 

will use a tilde to denote a post-collision quantity. Thus the post-collision velocities are 

 ̃   ̃   . Then, clearly, as seen from ℱ1, Newtonian momentum is conserved. 

Now consider a different frame ℱ2 ∈ ℘ℱ2 in standard configuration relative to ℱ1 with relative 

speed     equal to the pre-collision speed of A. In other words, ℱ2 is the pre-collision rest 

frame of A. According to Proposition NN, the ℱ2 pre-collision and post-collision velocities are 

  
      

   
  

 +
 2

  
2

 ̂  

and 

 ̃ 
     ̂   ̃ 

     ̂   

Consequently, the total Newtonian momentum changes from 

∑    
    

   

 +
 2

  
2

 ̂   
   

 +
 2

  
2

 ̂  

to 

∑   ̃ 
      ̂     ̂       ̂   

Thus the absolute change 
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|   |  |∑   ̃ 
  ∑    

 |     

(

 
 

 +
 2

  
2

  

)

    

and Newtonian momentum is not conserved in ℱ2. (Even though – of course – it is conserved to 

an excellent approximation at every-day speeds     .) 

Now, this example is a bit special in that the collision is totally inelastic. Of course, special rela-

tivity does not forbid inelastic collisions, but in a later section we will see that ‘strange’ things 

happen in such collisions (when relativistic effects are taken into account). Perhaps Newtonian 

momentum is conserved in relativity as well, as long as we restrict our attention to elastic colli-

sions? Obviously, such a restriction would seriously diminish the usefulness of the concept of 

‘momentum’, but we will see next that not even in this very restrictive class of experiments is 

Newtonian momentum universally conserved. To show this, we cannot consider any of the sim-

plest experimental setups for elastic collisions, in which two identical balls A and B have oppo-

site pre-collision velocities    and        and collide at the origin at which point they re-

verse their velocities, so that  ̃      and  ̃     . The reason is that, in such an experiment, 

the pre-collision situation is identical to the post-collision situation as far as velocities are con-

cerned. Indeed,  ̃     and  ̃    , so the identical balls merely swap velocities. Therefore, 

momentum will be conserved almost no matter how it is defined (e.g., the quantity 

∑        
2    is conserved in this collision). 

Therefore, we need to consider a slightly more complicated setup. One possibility is this: Let 

     ̂    ̂      ̂ 

where      . Thus, A is moving to the right and downwards, while B is moving straight up-

wards. Let them collide at the origin. Assume that Newtonian momentum is conserved; for in-

stance, let the post-collision velocities be 

 ̃    ̂ +   ̂  ̃     ̂  

This collision is clearly allowed in Newtonian mechanics; indeed, it is head-on. Now let ℱ2 be in 

standard configuration relative to ℱ1 with relative speed    . In this frame, the pre-collision 

velocities are 

  
   

 

 ( ) (  
 2

  
2)
 ̂    

     ̂ +
 

 ( )
 ̂  

while the post-collision velocities are 

 ̃ 
  

 

 ( ) (  
 2

  
2)
 ̂   ̃ 

     ̂  
 

 ( )
 ̂   

Therefore, the pre-collision total Newtonian momentum is 

∑    
   

  

 ( ) (  
 2

  
2)
 ̂     ̂ +

  

 ( )
 ̂  

and the post-collision momentum is 



 Physics Done Right, an Attempt 

 122/314 

∑   ̃ 
  

  

 ( ) (  
 2

  
2)
 ̂     ̂  

  

 ( )
 ̂   

Clearly, the   component of momentum happens to be conserved, but the   component changes 

from 

  

 ( )
 

  

 ( ) (  
 2

  
2)
   

(since        ) to 

 

(

 
  

 ( )
 

  

 ( ) (  
 2

  
2))

  

and so Newtonian momentum is not conserved in ℱ2. That is, not even in totally elastic colli-

sions is the Newtonian law of momentum conservation valid. Clearly, we have to abandon the 

Newtonian momentum ∑    . Although momentum so defined is a universally conserved quan-

tity in all every-day situations (to experimental accuracy), we have seen that strict universal 

conservation is impossible in general when relativistic effects are taken into account. 

However, all is not lost. It turns out that there is quantity that is fundamentally conserved even 

in relativity theory, and that tends to the Newtonian expression for momentum in the Newtoni-

an limit of low speeds. For this reason, we call this the ‘relativistic momentum’. 

Definition 

The (relativistic) momentum of a particle of mass   and velocity   is 

   ( )   

where  ( ) is the Lorentz factor. 

Notice that      as    , and – perhaps more importantly – that the relativistic momentum 

is equal to the Newtonian momentum to experimental accuracy if     . The (approximate) 

law of conservation of Newtonian momentum in the Newtonian limit      thus becomes a 

corollary of the conservation of relativistic momentum. 

And, indeed, relativistic momentum is believed to be a fundamentally conserved quantity in na-

ture, even when full relativistic effects are considered. Unfortunately, there is no simple proof of 

this [or proof at all…], as there is in the Newtonian case. Thus, at a first glance it might seem that 

the relativistic law of momentum conservation is profoundly less well motivated than the New-

tonian law, but this is not the case. 

The reason why we can prove the Newtonian law of momentum conservation is that we happen 

to have a postulate in the Newtonian theory that fits like a glove for this purpose, namely, New-

ton’s third law. Hence, the Newtonian law of momentum conservation follows immediate from a 

postulate of the theory, and so it is essentially a postulate itself. Furthermore, the only rationale 

for a postulate in a physical theory is that it agrees with observations. From the above it should 
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be clear that it is not a deficiency of the special theory of relativity if we need to postulate the 

conversation of (relativistic) momentum. 

But if laws of momentum conservation cannot be proved, then how could we prove that Newto-

nian momentum is not conserved in relativity? Well, that is a different thing. You cannot prove a 

physical law of conversation unless it follows from the postulates of the theory. However, given a 

proposed law of conservation, you might actually be able to prove that this cannot be valid, by 

assuming that the law is valid one frame ℱ1 ∈ ℘ℱ1 and then use the appropriate coordinate 

transformation (Galilean or Lorentz, for instance), and see that the law is not valid in some other 

frame. If you can show that it is not valid in some other frame ℱ2 ∈ ℘ℱ2, then you have shown 

that the law cannot be valid. Indeed, not only does it reduce the applicability of a conservation 

law if it only applies in some frames, but it is also impossible to tell in which frames it is valid, for 

every inertial frame is equivalent to any other inertial frame. Consequently, if a law only applies 

in some inertial frames (at most), then it isn’t a law of nature at all. 

More succinctly put: if a proposed law of nature isn’t compatible with the postulated coordinate 

transformation, then it isn’t a law of nature.33 

Using this technique, we have shown that the law of conversation of Newtonian momentum can-

not be valid (other than approximately) in relativity, for it is not compatible with the Lorentz 

transformation. We also proposed an alternative law, the law of conversation of relativistic mo-

mentum. Although we cannot prove this, we can verify that it – contrary to the law of conserva-

tion of Newtonian momentum – is compatible with the Lorentz transformation. This we will do 

in a later section. In fact, we cannot prove it right now, because the proof requires an additional 

hypothesis, namely, the fact that also the ‘relativistic energy’ is conserved in the original frame 

(that is, in the frame in which we postulate the conservation of relativistic momentum). In other 

words, the concepts of momentum and energy seem to be ‘entangled’ in special relativity. 

Anyhow, we now state 

Postulate NN 

The total (relativistic) momentum is a fundamentally conserved quantity in any isolated system. 

By ‘total relativistic momentum, we mean (at least so far) the sum ∑  (  )        if the isolated 

system consists only of a set of discrete matter particles with index set  . We do not yet dare to 

speak about kinds of systems. Also, from now on, by ‘momentum’ we mean relativistic momen-

tum. 

3.4.3 Proper Force 

What do we mean by ‘force’? Classically, if an object is found to have acceleration   in an inertial 

frame, and is known to have (rest) mass  , we deduce that the net force on the object is     . 

Now, in relativity theory, since in any frame ℱ we can measure the components of the accelera-

tion, and we know the (rest) mass of the object, we could easily compute the components of    

and call that the ‘force’ on the object. But we will see that this isn’t a helpful concept. 

Assume that a particle travels along the   axis of some inertial system ℱ1 ∈ ℘ℱ1. The accelera-

tion is measured to be  , and so the ‘force’ is deduced to be 

                                                             
33 In this terminology, we proved in Proposition NN that the law of conservation of Newtonian momentum 
is compatible with the Galilean transformation. 
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Now, let ℱ2 ∈ ℘ℱ2 be another frame in standard configuration relative to ℱ1 and with relative 

speed  . In this frame, the acceleration is found to be 

   
 

  ( )(       
2⁄ ) 
  

according to Proposition 14. Hence, a ℱ2-bound observer will deduce that the ‘force’ on the par-

ticle is 

   
  

  ( )(       
2⁄ ) 
    

(unless    ,     , or    ). This is in contrast with the Newtonian case, where the accelera-

tion (geometrically) is the same in any inertial frame, and so the force is the same; in standard 

configuration, even the components agree. It also entirely contradicts the usual idea that the 

force itself is a geometric, frame-independent, object. Intuitively, we would like to define some 

‘proper force’ as the product of mass and acceleration as measured in the rest frame of the ob-

ject. This way the ‘proper force’ would be the same in any frame of reference. One problem with 

this approach, however, is that the rest frame of the object is not an inertial frame if the object is 

accelerating, and so we do not know how to work in it. For example, Einstein’s postulates only 

concerns inertial frames. We will avoid this difficulty by doing some ‘trickery’. 

Definition 17 

Let A be any object travelling through space. At any proper time   as measured by a clock travel-

ling with A, let   ℱ , the instantaneous physical rest frame of A at time  , be the physical frame 

containing all inertial mathematical frames relative to which A is stationary (that is, momentari-

ly at rest) at time  . Any mathematical frame ℱ    ℱ  is called an instantaneous rest frame 

(IRF) of A at time  . A standard instantaneous rest frame is an instantaneous rest frame 

ℱ    ℱ  such that A is located at the origin of ℱ at time  . 

Notice that for every  , every ℱ    ℱ  is an inertial frame, and so we can do computations in it. 

If A travels with constant velocity relative to some inertial frame, then   ℱ     ℱ   for every 

pair (    2). If, on the other hand, A has a non-zero acceleration at a time  , there exists an     

such that   ℱ    ℱ     for all   |  |   . [Assuming that the acceleration is a continuous 

function of proper time.] 

Now we are ready to talk about forces. We will start with one ‘imaginable’ definition of the con-

cept: 

Definition 18 

Let A be any object travelling through space. The proper acceleration    on A at time   is the ac-

celeration as measured in an instantaneous rest frame ℱ    ℱ . The proper force    on A at 

time   is the product of rest mass and proper acceleration at this time, that is, 

        

Notice that it doesn’t matter which mathematical instantaneous rest frame we use to measure 

the acceleration, since it is a geometric vector independent of the coordinate system employed 

inside any given physical frame. This definition resembles the definition of the rest mass. In that 
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discussion, we said something like “defined this way, the rest mass is the same in any inertial 

frame of reference”. By that, we mean that any inertial observer can confirm that the rest mass 

has a particular value,   say, simply by moving to an (instantaneous) rest frame and measuring 

the mass. The situation is more complicated here (when talking about the proper force), because 

the proper force is a vector, and in order to specify a vector (using its components), you need to 

agree on a basis, and there is generally no obvious choice of such a basis in the IRF. Nevertheless, 

there is nothing wrong with Definition 18 per se, but one needs to realise that it is awkward to 

talk about the proper force if you do not live inside an IRF of the object being under considera-

tion. 

Assume that you live inside a physical frame ℘ℱ1, and that you are observing an object A with 

velocity   and (physical) instantaneous rest frame   ℱ  at some particular instance of time. 

Assume that the object is not at rest, that is, assume that  ℱ    ℱ . We are going to agree on 

a choice of mathematical frames ℱ1 ∈ ℘ℱ1 and ℱ    ℱ  in each of these two physical frames. 

We require that 

 ℱ2 is a standard IRF, and that 

 ℱ1 and ℱ2 are in standard configuration. 

Since ℱ2 is an IRF of A, the origin of ℱ2 is moving with velocity     relative to ℱ1, where   is 

the velocity of A relative to ℱ1. But the second requirement above implies     ̂. Thus     ̂, 

that is, A is moving (momentarily, at least) along the   axis at the chosen instance of time. Pick 

any convenient spatial ( ) and temporal origin of ℱ1. Then we have determined the mathemati-

cal frames ℱ1 and ℱ2 up to a rotation of the basis vectors about the  ̂ direction. 

From now on, every time we talk about a vector in ℘ℱ1 or   ℱ , the components are under-

stood to be relative to the respective bases. 

 

Figure 30. An inertial frame and an instantaneous rest frame. 

Now, let’s start doing some calculations. Let the components of the geometric proper accelera-

tion vector    be (              ) relative to the basis of ℱ2. Then the components of the acceler-

ation with respect to ℱ1 are 

    ( )
       

    ( )
 2     

�̂� 

�̂� �̂�  

�̂�  
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ℱ  

ℱ  
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    ( )
 2     

as deduced by applying [the inverse of the transformation in] Proposition 14 [since 

(  
    

    
 )   ]. Here  , the relative speed between ℱ1 and ℱ2, is equal to the speed of the ob-

ject as measured in ℱ1. Let us therefore call it   instead. Multiplication by the (rest) mass   then 

yields 

     ( )
         ( )

       

     ( )
 2       ( )

 2     

     ( )
 2       ( )

 2     

where  (              ) are the components of the proper force. Hence, 

      ( )
     

      ( )
2    

       ( )
2     

In the special case of motion along a straight line, we have 

Proposition 19 

Assume that a particle is travelling along the   axis of some frame ℱ1 ∈ ℘ℱ1 and that, at some 

point, has speed   and acceleration   relative to ℱ1. Then 

    ( )
    

where    is the proper force on the particle at that time. 

We conclude this subsection by a beautiful relation. This far we have found a new, relativistic, 

definition of momentum, and, in addition, introduced the concept of ‘proper force’ as the force 

observed in an IRF. ‘Accidentally’, these definitions imply 

Proposition 22 

Let ℱ be a frame and A an object travelling along the   axis of ℱ. Suppose that the proper force 

on A is    and that, as measured in ℱ, the momentum of A is  . Then 

   
  

  
  

Thus, the one-dimensional momentum-derivative form of Newton’s second law has the exact 

same form in special relativity! Notice that the scalar proper force    is independent of the frame 

of reference, whereas both the coordinate time   and momentum   depend on the frame ℱ. Ap-

parently, these dependencies cancel as to make     ⁄  frame-independent. 

Proof of Proposition 22 

According to Proposition 19,     
 ( )  . On the other hand, Definition 16 states that 

   ( )   so that 

  

  
  (

  ( )

  

  

  
 +  ( )

  

  
)   (

  ( )

  
 +  ( ))      ( )     



ANDREAS REJBRAND D R A F T  http://english.rejbrand.se 

 127/314 

since the rest mass   is a constant. ∎ 

3.4.4 The Relativistic Force 

It is natural to ask what the meaning of the vector     ⁄  (which certainly is well-defined) is in-

side any given frame. Of course, a priori, we have to assume that this quantity is frame-

dependant. We have already seen that, in the special case where the particle is confined to the   

axis,     ⁄    , and so, in this case, 

  

  
 (
   
  
 
   

  
 
   
  
)  (

 

  
( ( )   ) 

 

  
( ( )   ) 

 

  
( ( )   ))  (      ) 

since the functions     ( ) and    ( ) are identical, and since         at all times. We 

will now investigate the general case, where the particle is not restricted to a straight line. In full 

generality, 

  

  
 
 

  
( ( )  )   (

  ( )

  
 +  ( )

  

  
)   

 ( ) 

  
2  

  

  
 +  ( )   

It may come as a surprise, but in general (and this is nothing else than Newtonian mechanics), 

  

  
   

where   | | and   | |  |    ⁄ |.34 Therefore, in general, 

     
  

  
    (   )  

Instead, 

  

  
 
 

  
| |  

 

  
√  

2 +   
2 +   

2  
    

√  
2 +   

2 +   
2

+
    

√  
2 +   

2 +   
2

+
    

√  
2 +   

2 +   
2

 
 

 
      

thus 

     
  

  
  

Using this identity, (↑) reads 

  

  
  

 ( ) 

  
2
(   ) +  ( )   

Let 

    +    

where the parallel acceleration 

   
(   )

| | 
    

and the orthogonal acceleration 

                                                             
34 Think of the case of circular motion with constant speed (cf. 1.4.3). Here   is constantly changing. In-
deed,     is constant and points to the centre of the orbit. However, the speed   | | is constant; thus 
    ⁄   . On the other hand, since    , the vector length   | |   . Hence     ⁄   . 
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Then 

  

  
  

 ( ) 

  
2  2  +  ( )(  +   )  ( 

 ( ) 

  
2  2 +  ( ))  +  ( )   

   ( )   +  ( )    

We now make 

Definition NN 

The relativistic force on a particle is 

  
  

  
 

where   is the (relativistic) momentum of the particle 

and conclude 

Proposition NN 

Let   be the relativistic force on a particle with mass  , velocity  , and acceleration  . Then 

   
 ( ) 

  
2
(   ) +  ( )  

   ( )   +  ( )   

where     +   ,     , and     . 

3.4.5 Comparison between Proper Force and Relativistic Force 

Assume the setup of Figure 30, where ℱ2 is an IRF of a particle that momentarily is moving in the 

 ̂ direction relative to ℱ1. Let    (              ) be the proper force and let   (        ) be 

the relativistic force relative to ℱ1. Let the acceleration of the particle be 

     ̂ +    ̂ +    ̂    +    

relative to ℱ1. Then the proper force components are 

      ( )
     

      ( )
2    

       ( )
2    

(cf. ↑) while the relativistic force components are 

    ( )
     

    ( )    

    ( )    

using Proposition NN. Clearly the proper force and the relativistic force are two different con-

cepts. In addition, since the components of the proper force are Lorentz scalars (frame-

independent), it is clear that the components of the relativistic force are not, that is, they do de-
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pend upon the frame of reference.35 The   component, however, coincides with the   component 

of the proper force. Thus 

Observation NN 

The proper force and the relativistic force are two different concepts. However, in the special 

case of rectilinear motion, they coincide. In particular, while the components of the proper force 

are Lorentz scalars, the components of the relativistic force are not. 

Of course, an IRF of an object is equivalent to any other inertial frame, and so we can compute 

the relativistic force inside this frame. Since the object is at rest relative to this frame,     

which implies  ( )    and so the relativistic force is 

       

       

       

which, by definition, are the components of the proper force. Thus 

Observation NN 

Inside an IRF of an object, the relativistic force on the object equals the proper force on it. 

We should also state the obvious: 

Observation NN 

Both the proper and the relativistic force tends to the Newtonian force in the Newtonian (low-

speed) limit, where the ‘Newtonian force’ is defined as the product of (rest) mass and accelera-

tion. 

Finally, we have to point out, once again, that we have merely defined two quantities, the proper 

force and the relativistic force. That’s it. In particular, this means that, every time we talk about a 

‘force’, we need to specify what we mean by ‘force’ in that case. 

3.4.6 Constant Force 

Not only is the concept of ‘proper force’ convenient because it is frame-independent, but it is 

also a very natural definition of the ‘force’ in general. To appreciate this, think of a spaceship that 

is accelerating. At any time, there is an instantaneous rest frame of the ship. It is relative to this 

frame that the engines operate. [Which other frame could it possibly be?] Therefore, if the en-

                                                             
35 This follows from the definition of the proper force, and the difference between the expressions (↑) and 
(↑). Still, these claims can be verified by far more naïve methods. Indeed, let ℱ1 and ℱ2 be two frames in 

standard configuration with any relative speed  , and choose the velocity (        ) of a particle relative 

to ℱ1 and the acceleration (        ), also relative to ℱ1. Compute the numbers (              )  

( ( )      ( )
2     ( )

2   ) of the proper force. Now, use the Lorentz transformations to determine 

the components (  
    

    
 ) and (  

    
    

 ) of the velocity and acceleration, respectively, with respect to 

ℱ2. Then compute the proper force (    
      

      
 )  ( (  )    

   (  )2   
   (  )2   

 ) in ℱ2. You 

should get (              )  (    
      

      
 ) for every choise of the parameters  , (        ), and 

(        ). This confirms that the proper force is a Lorentz invariant vector, when computed using (↑). 

Then redo the same calculations using the relativistic force instead of the proper force, using the similar, 
but different, expressions in Proposition NN. You will find that the components, except for the   compo-
nent, depend upon the frame. 
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gines have a fixed power  , they will produce a constant force   relative to the   ℱ . This is the 

‘proper force’. 

However, as we saw in the last section, another ‘reasonable’ concept of force is the relativistic 

force. In this section, we will investigate the case of a constant force acting on an object. Hence, it 

might seem like we have to choose either one of the concepts. Indeed, our goal is to find the ac-

celeration, and, via integration, the velocity and displacement formulae. Thus, we need to know 

if it is the proper force 

( ( )      ( )
2     ( )

2   ) 

or the relativistic force 

( ( )      ( )     ( )   ) 

that is constant. Fortunately, however, we will only be interested in long-distance, galactic trav-

el, and such journeys occur along straight lines. Hence, we will only be moving along the   axis of 

some inertial coordinate system, and – lucky us – the   components agree. ‘Problem solved!’ 

Now, let us investigate this more thoroughly. Let the constant (proper, say) force on the ship be 

 . Then, according to an observer in an inertial frame ℱ1 that is in standard configuration with 

every   ℱ    ℱ, the coordinate acceleration is 

  
  

  ( ) 
 

from Proposition 19. This is 

  

  
 
  
 
(  

 2

  
2)

 2⁄

  

that is, a first-order non-linear ODE in the coordinate speed  . It is clearly separable, for 

 ( )
  

  
 (  

 2

  
2)

  2⁄
  

  
 
  
 
  

Integration yields 

  ( )  
  
 
 +   

for some constant  , as is verified by differentiation. Assume that the ship starts from rest at the 

Earth (the spatial origin) at time    ; then    . Solve for  ( ) and find 

 ( )  
   

√ 2 +   
 2  

2 2
 

assuming all quantities positive. This is trivial to integrate: 

 ( )  
  
2

  
√ 2 +   

 2  
2 2 +    

Recalling that       , where    is the proper acceleration, we find 

 ( )  
  
  
√  

2 +   
2 2  

  
2
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where we also have chosen      
2   ⁄  as is required by  ( )   . The inverse relation is 

 ( )  √
 2

  
2 +

  

  
  

For future use, we also notice that (↑) and (↑) combine to give 

 ( )  
√

  
2 2 +    

2   

  
2 +

  
2 2

  
2 +     

  

Let us now pause for a few observations. 

Observation 20 

As seen from an inertial frame ℱ, the speed of an object accelerating along the   axis due to a 

constant proper force can never exceed the speed of light, but will approach it indefinitely. 

Proof 

As seen from ℱ, the speed of the object is 

 ( )  
   

√ 2 +   
 2  

2 2
 

 

√
 2

  
2 2
+
 
  
2

{
       
         

 

 ∎ 

We are now interested in how an observer on board the spaceship perceives the journey. Due to 

time dilation/length contraction, an on-board passenger should not think that the journey is as 

long as an observer at rest on Earth would. Let    be a short interval of Earth time, and    the 

corresponding short moment of proper time inside the ship [by which we really mean inside an 

instantaneous rest frame]. Then     ( )   where   is the current speed of the ship. Let    ̃ 

be the time of the arrival at Vega, say, relative to Earth, and let     ̃  be the proper time inside 

the ship of the very same event.        at Earth. Then 

 ̃  ∫   
 ̃

 

 ∫
 

 ( )
  

 ̃

 

 ∫ √  
 2

  
2   

 ̃

 

 ∫ √  
  
2 2

  
2 2 +   

2 2
  

 ̃

 

 

using (↑). Some algebra yields 

 ̃  ∫
 

√ +
  
2

  
2  
2

  
 ̃

 

 
  
  
       (

  
  
 ̃)  

Example 21 

The (proper) distance between the Earth and Vega is      light-years. We assume a constant 

proper acceleration of          ⁄ 2 which is optimal for the human musculoskeletal system. 

Then (↑) gives the duration  ̃          . But a passenger will (according to herself) be there 

already in  ̃           . 
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Armed with the tremendous power of special relativity, we should really not be this modest. Let 

us instead travel to the Andromeda galaxy. The proper distance is now       million light-

years. This journey will take 2.5 million years of Earth time. But a passenger will (again, accord-

ing to herself) be there in only 15 years! 

The diameter of the observable universe is      billion light-years. A journey of this distance 

takes 93 billion years, but a passenger will only age 25 years. 

Exercise: The above computations all assume that the traveller accelerates with 

constant proper acceleration the entire journey. A more realistic case is that the 

journey ends with zero speed. Assuming that the spaceship accelerates during the 

first half of the journey and slows down during the second half, how long would 

the above journeys take? 

3.4.7 Energy 

In addition to the kinematical surprises [an upper speed limit, time dilation, length contraction, 

relativity of simultaneity, etc.] that follow immediately from Einstein’s postulates, a major ‘re-

sult’ in Special Relativity is the often-misunderstood ‘equivalence’ between mass and energy, as 

quantified by the easy-to-write but hard-to-explain relation      
2. This is indeed a subject 

surrounded by great confusion. It is easy to think that one ‘understands’ the ‘equivalence’ just 

because one has memorized the extremely well-known formula      
2, but this is utterly 

wrong. A formula is nothing without a context, and, in this case, the context is far from ‘extreme-

ly well-known’. 

First of all, the context need to explain what   and   really stand for in the formula. When it 

comes to  , from a classical point of view, we might want to specify what kind of mass we are 

talking about: the inertial mass, the active gravitational mass, or the passive gravitational mass. I 

do not think this is the main issue, because these masses are identical in essentially all estab-

lished theories. Yet   is not unproblematic, because we need to specify if   is the rest mass or 

the relativistic mass. Even worse, if we start to speak about the mass of non-material fields, such 

as the ‘mass’ of an EM field, as indeed one often does when one speaks about the mass-energy 

equivalence, then what in the world do we mean by ‘mass’? 

When we have settled for a definition of  , we need to decide on what   quantifies. Is it the ki-

netic energy? The total mechanical energy? The total energy? In fact, just as we defined a new 

expression for the momentum in special relativity, we will define a new expression for the ener-

gy, both kinetic and total. There are several ways of doing this, and, whatever way we choose, we 

have to remember that we have only made a definition. We have postulated an expression (mo-

tivated by some rather weak ideas), and given it a special name. A priori, there is no reason to 

believe that this quantity should have any physical significance. It is interesting, however, that 

one of the most natural ‘weak ideas’ actually gives rise to the famous      
2 formula rather 

quickly. In this way, special relativity ‘suggests’ the mass-energy ‘equivalence’, but it says noth-

ing about its physical meaning, at least not when derived in the usual way, from the ‘weak idea’. 

Finally, if we have somehow settled for a precise definition of   and  , we need to specify under 

what circumstances      
2 holds. Overall,      

2 is easy-to-state but very hard to explain. 

Let us now go into the details. We will start by deriving      
2 from the usual ‘weak idea’. 
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We first define relativistic work on a particle as the line integral of proper force. For simplicity, 

we will restrict the analysis to the one-dimensional case. Therefore, you can equally well think of 

the proper force as being the relativistic force, if you prefer so. The spatial variables used in the 

line integral are not those of an instantaneous rest frame of the particle, but rather those of an 

observer in a frame relative to which we are interested in the ‘relativistic kinetic energy’ [which 

we define as the relativistic work required to obtain it]. Let the position of the particle be  ( ) at 

time  . Then the relativistic work done between     and    ̃ is 

  ∫     
 ̃

 

 ∫
 

  
( ( )  )   

 ̃

 

  ∫ ( 
 

  
 ( ) +  ( ) )    

 ̃

 

 

  ∫ (  
   ( )

  
2  +  ( ) )   

 ̃

 

  ∫ (
 2 2( )

  
2 +  ) ( )    

 ̃

 

 

  ∫   ( )    
 ̃

 

  

Restrict attention to the schoolbook case where    ( ) is a strictly increasing function. Then 

we can change variable of integration from   to  . Assume also that  ( )    and  ( ̃)   ̃. Since 

      , 

   ∫   ( )   
 ̃

 

 [  ( )  
2] 
 ̃    ( ̃)  

2     
2  

This motivates36 

Definition 23 

The relativistic kinetic energy of a particle of (rest) mass   and speed   is 

    ( )   
2     

2  ( ( )   )   
2  

Taylor expansion yields 

 ( )   
2     

2 +
 

 
  2 +  (  ) 

and so we have 

Proposition 24 

Let a particle of rest mass   and speed   have relativistic kinetic energy   . Then 

   
 

 
  2       

Thus, the Newtonian kinetic energy is the low-speed limit of the relativistic kinetic energy. The 

expression in Definition 23 looks a bit funny. It ‘sort of’ suggests 

Definition 24 

The total energy of a particle of (rest) mass   and speed   is 

                                                             
36 Notice that, although the speed of a particle is bounded from above by the speed of light, there is no 
limit on the kinetic energy; indeed,      as     . 
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   ( )   
2  

The rest energy of such a particle is 

      
2  

Notice that     +   . In the rest frame of the particle,     and so      and     . That 

is, the rest energy is the total energy of the particle in its rest frame, where it has no kinetic en-

ergy. In a frame in which the particle is moving, the total energy is the sum of its rest energy and 

its kinetic energy. Hence, the rest energy is an invariant scalar – it is the same in every frame. 

The subscript zero reminds us of this. It is not uncommon that texts on special relativity at this 

point says something seemingly stupid like “thus, Special Relativity requires an object at rest to 

have a non-zero energy equal to    
2”. This is nonsense. First, Definition 24 is nothing but a defi-

nition, so the       
2  ‘result’ is a definition, not a theorem. In addition, we have no a priori 

reason to believe that the ‘energy’ defined by Definition 24 has any physical significance, such as 

conservation. In addition, from a classical (or, rather, Newtonian) point of view, should there be 

any rest energy, it should not be physically detectable in any way, for it is a constant, namely, 

   
2, and we are always free to shift the zero of potential energy without altering any of the 

physics. 

From now on, when we talk about total energy and kinetic energy, we mean total relativistic 

energy and relativistic kinetic energy, respectively. We also postulate 

Postulate 

The total (relativistic) energy is a fundamentally conserved quantity in any isolated system. 

By ‘total relativistic energy’, we mean (at least so far) the sum ∑  (  )    
2

    if the isolated sys-

tem consists only of a set of discrete matter particles with index set  . We do not yet dare to 

speak about kinds of systems. 

3.4.8 Relativistic Mass 

Before continuing our investigation of the physics of special relativity, we will introduce a spe-

cial name for the product  ( )  between the Lorentz factor and the mass of a particle of mass   

and speed  . 

Definition 26 

Let ℱ be an inertial frame. The relativistic mass in ℱ of a particle with mass   moving with speed 

  relative to ℱ is 

    ( )  

where   is the rest mass of the particle. 

Note that the relativistic mass is the same as the rest mass in the inertial rest frame of the parti-

cle [should such a frame exist]. This is a rather nice frame-dependant quantity, for we have 

Corollary 27 

The momentum   and total energy   of a particle with relativistic mass    and speed   are 
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2  

The proper force is 

   
 

  
(   )  

Notice in particular that       has the exact same form as the Newtonian form of momentum, 

and, of course,      in the Newtonian limit      since  ( )    as    . We will always use 

a subscript ‘ ’ when denoting a relativistic mass. In addition, when we speak of ‘mass’, we will 

mean the rest mass, and not the relativistic mass. If we wish to speak about the relativistic mass, 

thus, we will always say so explicitly. 

3.4.9 Compatibility of Conservation Laws with the Lorentz transformation 

We can now prove the promised – and very important – result that the relativistic law of mo-

mentum conservation is compatible with the Lorentz transformation. As remarked in section XX 

above, in order to prove this, we need the additional hypothesis that also the total relativistic 

energy is conserved in the original frame. In addition, it turns out that, as a bonus, we will also be 

able to prove that the relativistic law of energy conservation is compatible with the Lorentz 

transformation. Now, let’s turn to the proof. 

Theorem NN 

The laws of conservation of (relativistic) momentum and (relativistic) total energy are compati-

ble with the Lorentz transformation. 

Proof37 

Assume that the total relativistic momentum   ∑  (  )        of some system is conserved 

in one inertial frame ℱ1 ∈ ℘ℱ1, and let ℱ2 ∈ ℘ℱ2 be any other inertial frame in standard con-

figuration relative to ℱ1 with relative speed    , in which the total momentum is    

∑  (  
 )    

 
   . Now let an arbitrary amount of time pass, after which the momenta are 

 ̃  ∑  ( ̃ )   ̃     and  ̃  ∑  ( ̃ 
 )   ̃ 

 
    in ℱ1 and ℱ2, respectively. Our assumption is 

thus 

   ̃  

We will consider one of the particles, the  th, say, but for the sake of notational simplicity, we 

will drop the subscript ‘ ’. Let the velocity of the particle be   (        ) in ℱ1. In ℱ2 the 

mass of the particle is still  , since the rest mass is frame-independent. The velocity, however, is 

   (
    

       
2⁄
 

  

 ( )(       
2⁄ )
 

  

 ( )(       
2⁄ )
)  

 

       
2⁄
(     

  

 ( )
 
  
 ( )

)  

In ℱ1, the initial and final momenta of this particle are 

 ( )    ( ) (        )        

                                                             
37 Throughout this proof, we assume that the rest mass of each particle is a constant of motion before, 
during, and after the collision, since at this point it would not seem natural to assume anything else. How-
ever, notice that the proof remains valid even if the pre-collision and post-collision rest masses of each 
particle are allowed to be different. 
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 ( ̃)  ̃   ( ̃) ( ̃   ̃   ̃ ) 

(which, of course, might differ) while in ℱ2 the initial momentum is 

 (  )    
 

(  
   
  
2 )√  

  2

  
2

(     
  

 ( )
 
  
 ( )

) 

where 

  2  |  |2  (
    

       
2⁄
)

2

+ (
  

 ( )(       
2⁄ )
)

2

+ (
  

 ( )(       
2⁄ )
)

2

 

so that (this takes a few lines to check) 

√  
  2

  
2  

√(  
2   2)(  

2    
2    

2    
2)

  
2     

 
√(  

2   2)(  
2   2)

  
2     

 

and (this is immediate, though!) 

(  
   

  
2 )√  

  2

  
2  

√(  
2   2)(  

2   2)

  
2   

Thus the particle’s initial momentum (↑) is 

 (  )    
   

2

√(  
2   2)(  

2   2)
(     

  

 ( )
 
  
 ( )

)  

  ( ) ( ( )(    )      )  

Similarly, the final momentum is found to be 

 ( ̃ )  ̃   ( ̃) ( ( )( ̃   )  ̃   ̃ )  

Thus the change of momentum, as seen from ℱ2, is 

     ̃     ∑ ( ̃ )  ( ( )( ̃     )  ̃     ̃   )

   

 ∑  (  )  ( ( )(      )          )

   

 

 ∑ (

 ( )[   ( ̃ ) ̃       (  )    +   (  )     ( ̃ ) ]

   ( ̃ ) ̃       ( )    
   ( ̃ ) ̃       ( )    

)

   

 

 ∑ (

 ( )[   ( ̃ ) ̃       (  )    ]

   ( ̃ ) ̃       ( )    
   ( ̃ ) ̃       ( )    

)

   

+∑( ( )[   (  )     ( ̃ ) ]) ̂
 

   

  

The first sum is obviously zero by virtue of    ̃. The second sum is zero if and only if 

∑( ( )[   (  )     ( ̃ ) ]) ̂
 

   

  ( )  ̂ ∑(   (  )     ( ̃ ))

   

 

 
 ( ) 

  
2  ̂ ∑( (  )    

2   ( ̃ )    
2)
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2  ̂ (∑ (  )    

2

   

 ∑ ( ̃ )    
2

   

)   
 ( ) 
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that is, if and only if we assume that the change in total energy 

   ∑ ( ̃ )    
2

   

 ∑ (  )    
2

   

   

in ℱ1. We finally show that the total energy is conserved in ℱ2 too. The initial total energy in ℱ2 

is 

   ∑ (  
 )    

2

   

 ∑
    

2(  
2       )

√(  
2   2)(  

2    
2)   

 

while the final total energy is 

 ̃  ∑ ( ̃ 
 )    

2

   

 ∑
    

2(  
2   ̃    )

√(  
2   2)(  

2   ̃ 
2)   

  

Thus, the change in total energy is 

     ̃     ∑
    

2(  
2   ̃    )

√(  
2   2)(  

2   ̃ 
2)   

 ∑
    

2(  
2       )

√(  
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∑
    (  

2   ̃    )

√  
2   ̃ 
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 ∑
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2       )

√  
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  ( ) [∑   ( ̃ )(  
2   ̃    )

   

 ∑   (  )(  
2       )

   

]  

  ( ) [∑   ( ̃ )  
2     ( ̃ ) ̃        (  )  

2 +   (  )     

   

]  

  ( )∑[   ( ̃ )  
2     (  )  

2]

   

   ( )∑[   (  )        ( ̃ ) ̃   ]

   

  

The first sum is 

∑[   ( ̃ )  
2     (  )  

2]

   

      

and the second is 

∑[   (  )        ( ̃ ) ̃   ]

   

 ∑[   (  )      ( ̃ ) ̃ ]

   

  ̂      ̂     

Therefore,       and total energy is also conserved in ℱ2. Thus, we have shown 

{
    
    

 {
     

     
 

for any primed inertial frame and at any later time, which is a precise statement of the theorem.∎ 

It is interesting that the concepts of momentum and energy [conservation] are ‘entangled’ in 

special relativity. This reminds of the fact that space and time are ‘entangled’ by the Lorentz 

transformation. It is an amazing fact that the momentum–energy entanglement is of the exactly 

same form as the space–time entanglement, as is evident from 
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Theorem NN 

Let ℱ1 ∈ ℘ℱ1 and ℱ2 ∈ ℘ℱ2 be two inertial frames in standard configuration and with relative 

speed  . Let a particle have momentum   (        ) and energy  as seen from ℱ1, and 

   (  
    

    
 ) and    as seen from ℱ2. Then 

    ( )(     ) 

  
   ( )(       

2⁄ ) 

  
     

  
     

where  ( )  (   2   
2⁄ )  2⁄  is the Lorentz factor. 

Proof 

Let the particle have mass   and velocity   (        ) in ℱ1. Then it has momentum 

    ( )    

    ( )    

    ( )    

and total energy 

   ( )   
2  

In ℱ2, the rest mass is naturally the same, but the velocity is changed to (↑), transforming the 

momentum into (↑). But this can be written 

  
   ( ) ( ) (    )  

  ( )( ( )     ( )  )  

  ( )(       
2⁄ ) 

  
   ( )       

  
   ( )        

From (↑), we recall that the energy is transformed to 

   
    

2(  
2     )

√(  
2   2)(  

2   2)
    ( ) ( )(  

2     )   ( )( ( )   
2   ( )    )  

  ( )(     )  

∎ 

3.4.10 The Mass–Energy Equivalence 

Let us recapitulate on what we have done in SR dynamics so far. 

 The law of conservation of Newtonian momentum is incompatible with the postulates of 

special relativity.38 

 The law of conservation of relativistic momentum is compatible with the postulates of 

special relativity. This does not prove that the law is valid; only experimental verification 

can make us certain of this. Just as experimental verification made Newton postulate the 

                                                             
38 We have shown that the law is incompatible with the Lorentz transformation, but since the latter fol-
lows immediately from the postulates of the theory, the law is actually incompatible with the postulates. 
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Newtonian law of momentum conservation (via Newton’s third law), experimental veri-

fication make us certain enough to postulate the relativistic law of momentum conserva-

tion. In addition, an important theoretical fact suggesting this law is that it reduces to the 

Newtonian law (which we are far more familiar with) in the low-speed limit. 

 

In addition, but on a slightly less rigorous, and almost poetical level, we can make a sim-

ple observation. Let the phrase ‘relativistic generalisation of Newtonian momentum’ de-

note a new expression that (1) tends to the expression for the Newtonian momentum in 

the low-speed limit (2) and is compatible the postulates of special relativity (in particu-

lar with the Lorentz transformation). Then we also have the encouraging fact that the 

relativistic expression  ( )   is probably the ‘simplest’ relativistic generalisation of 

Newtonian momentum    there is. 

 We have found a new expression for the kinetic and total energy such that the law of to-

tal energy conservation is compatible with the Lorentz transformation. This law also re-

duces to the Newtonian law in the low-speed limit, and encouraged by experimental ver-

ification we postulate this new law. In fact, we have to postulate this law if we wish to 

postulate the law of conservation of momentum, because of the entanglement. That is, ei-

ther we postulate none of the conversation laws, or we postulate both. Encouraged by 

both theoretical suggestions (such as the low-speed limits) and experimental verification 

(especially the latter), we feel little shame in postulating both. 

3.4.10.1 An Inelastic Collision: The Rest Mass 

We will now consider a simple inelastic collision. Let A and B be two billiard balls of equal rest 

mass   and pre-collision velocities      ̂ and       ̂. Assume that their post-collision ve-

locities are        ̂ and       ̂  for some   [   ]. If     the collision is totally elastic, 

but for all other such  , the collision is inelastic. 

In Newtonian physics, every possible case is well familiar to us. Irrespective of  , the total mo-

mentum of the system A + B is a constant of motion. The simplest case is     in which there 

isn’t really much to say at all, for even the total energy is constant. If     then kinetic (and total 

mechanical) energy is clearly lost. The lost mechanical energy has been converted into other 

forms of energy, for instance into thermal energy inside the balls. If the collision took place in 

vacuum, that should account for the majority of the lost kinetic energy. If the collision takes 

place on a pool table in a room filled with air, then the surrounding air and the table should get 

some thermal energy, too. In addition, a pressure (sound) wave would be produced, both inside 

the table and in the air. In any realistic collision between typical billiard balls,    39, but if we 

instead use soft and deformable balls, we can get far lower values of  , even    . 

We will now investigate the same collision considering the relativistic corrections. The total pre-

collision momentum is 

   ( )   ̂   ( )   ̂    

and the total post-collision momentum is 

 ̃    (  )    ̂ +  (  )    ̂     

Thus, momentum is conserved. The total pre-collision energy is 

                                                             
39 Here,     (   )  (   ). 



 Physics Done Right, an Attempt 

 140/314 

   ( )   
2 +  ( )   

2    ( )   
2 

while the total post-collision energy is 

 ̃   (  )   
2 +  (  )   

2    (  )   
2  

That is, total energy is not conserved if    . But according to our postulate of energy conserva-

tion, total energy is conserved. Hence, we have a contradiction. 

One might feel that the problem is due to our postulating the conversation of the total relativistic 

energy. Indeed, the Newtonian analogue (and limit) of the total relativistic energy  ( )   
2  

   
2 +        is the sum of a constant potential and the (Newtonian) kinetic energy, that is, essen-

tially, kinetic energy. But we all know that the mechanical (that is, macroscopic) kinetic energy is 

not a constant of motion in an inelastic collision (or if there are other non-conservative forces 

present, such as friction). Indeed, there are other forms of energy, such as thermal and electro-

magnetic energy. That is, from a Newtonian point of view,    ̃ is not a contradiction, but what 

is to be expected, because we neglect the non-mechanical forms of energy produced in the colli-

sion. 

Notice, however, that Postulate NN talks strictly about isolated systems. That is, if the system 

exchanges momentum or energy with the surroundings, then the postulate do not apply to the 

system. In this case, this means that we have to speak only of the case when the billiard balls 

collide in vacuum, so that no table and no air can steal any energy from the balls. But this still 

does not resolve our ‘paradox’, because the system A + B clearly contains the thermal energy 

inside the balls, and this increases if    . Hence, even if the system is perfectly isolated, Postu-

late NN seems to be violated. 

There are basically just two ways to resolve this paradox. One is to abandon Postulate NN, and 

the other is to let the rest mass of each ball change during the collision. From a Newtonian point 

of view, the latter is absurd, but by now we are used to the fact that special relativity forces us to 

abandon our old perceptions of physical ‘common sense’. It also turns out that the latter ap-

proach is the one that agrees with experiments. 

Admittedly, our treatment of relativistic energy was not quite as careful as our treatment of rela-

tivistic momentum, so the reader might object to the fact that we challenge the Newtonian con-

cept of mass just in order to save the conservation of relativistic total energy. However, if we 

would accept to invalidate the law of energy conservation, we would also have to reject the law 

of momentum conservation, because the proof of compatibility of the law of momentum conser-

vation requires that the energy be conserved too in the first frame (and vice versa) due to the 

‘entanglement’ of momentum and energy [conservation]. Indeed, insist on the conservation of 

rest mass, and consider a second frame ℱ2 in standard configuration relative to the frame ℱ1 

used in the experiment above. Let the relative speed be    , so that ℱ2 is the pre-collision rest 

frame of A. Then, as seen from ℱ2, the   component of the total momentum changes from 

(  
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and 

(  
 )        

 

√  
 
  
2(

    

  
   
  
2

)

2

 
    

  
   
  
2

+  
 

√  
 
  
2(
     

 +
   
  
2

)

2

 
     

 +
   
  
2

 

and it is easy to prove that (  
 )       (  

 )     . 

We therefore accept the fact that the rest mass of a particle, although invariant (that is, frame-

independent at any given time), is not a constant of motion. Let us return to our initial inelastic 

collision. Now we have to let   be the pre-collision rest mass of the particles, and introduce  ̃ as 

the post-collision mass [due to symmetry, the post-collision masses need to be equal]. 

Hence, the pre-collision total momentum is 

   ( )   ̂   ( )   ̂    

and the total post-collision momentum is 

 ̃    (  ) ̃   ̂ +  (  ) ̃   ̂     

Thus, momentum is necessarily conserved. The total pre-collision energy is 

   ( )   
2 +  ( )   

2    ( )   
2 

while the total post-collision energy is 

 ̃   (  ) ̃  
2 +  (  )   

2    (  ) ̃  
2 

and our postulate  ̃    makes sure that the total energy is conserved (which is no longer an 

impossibility) and some trivial algebra yields 

 ̃  
 ( )

 (  )
   

Notice in particular that      ( )   (  )   ̃   . That is, every time I said something 

like “with foresight, we will avoid inelastic collisions in this discussion” in the precious sections, 

what I really meant to say was “we assume that the rest mass of every particle is a constant of 

motion”. 

Although total energy is conserved in the collision, the kinetic energy is reduced by an amount 

     ̃      ( (  )   ) ̃  
2   ( ( )   )   

2        
2 

where 

    ̃    

is the change in rest mass of either of the balls. At any time, the total energy is split equal be-

tween the two balls (by symmetry), and so we can conclude: 

  The total energy as defined by   ( ( )   )   
2 +     

2   ( )   
2 is conserved. 

o Notice that  ( ) is decreased while   is increased. [This is the content of (↑).] 

 At the collision, a ball gains thermal energy and gains rest energy as defined by    
2. 

o Thus, its rest mass   is increased. 
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 At the collision, a ball loses kinetic energy as defined by ( ( )   )   
2. 

 The change in rest energy     due to the change of rest mass    is     (  )  
2. 

The above example suggests that the mysterious ‘rest energy’ of an object is a measure of the 

internal (such as thermal) energy of the object. Since the rest energy       
2 where   

2 is a 

fundamental constant of nature, rest energy is essentially the same thing as mass (but with a 

different unit). Therefore, if the rest energy is a measure of the internal energy, so is the mass. 

Observation NN 

The rest energy, and so the rest mass, of a body is a measure of the total internal energy of the 

body. 

We will use this observation as a postulate. 

Now that we have constructed a theory in which the mass of a particle does not behave like in 

the Newtonian theory, it is a very valid question to ask, “what is ‘mass’ in this new theory?” In 

Newtonian physics, mass is equal to the inertial, active gravitational, and passive gravitational 

masses, which are fairly well-defined from an experimental point of view. Experimental verifica-

tion supports the fact, however, that the (rest) mass of particle retains its Newtonian identity. 

For example, a hot billiard ball is heavier than a cold (otherwise identical) billiard ball, and it is 

more resistant to a change in velocity. In fact, the title of one of Einstein’s famous 1905 papers is 

“Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?” (“Does the Inertia of a Body 

Depend Upon Its Energy Content?”). 

Example NN 

Consider the two balls above. Put       ,      ⁄ , and      . Then the pre-collision rest 

energy of either ball is 

      
2                           

while the pre-collision kinetic energy is 

   ( ( )   )   
2                       

so that the total energy is 

    +                                  

Clearly the rest mass ‘dominates’ [to say the least!]. After the collision, 

 ̃  
 ( )

 (  )
                             

Thus, the mass has increased by 

    ̃                           
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Example NN + 1 

Same setup but    . The pre-collision energies are the same, that is, 

                            

                       

                                

According to (↑), the post-collision rest mass is 

 ̃  
 ( )

 (  )
   ( )                             

with a difference 

    ̃             

Hence, the post-collision energies are 

 ̃                                

 ̃    

 ̃                                

Obviously, we didn’t have to use (↑), since the kinetic energy is zero after the collision, while the 

total energy is the same as it was prior to the collision. Hence, we get the rest energy, that is, the 

mass by 

 ̃   ̃  
2   ̃     

Thus 

 ̃      
 2   ( )   

2   
 2   ( )   

3.4.10.2 Some Notes on Additivity 

The total relativistic energy, and so the relativistic mass, is an additive property, just as energy 

and mass are additive in Newtonian mechanics. However, the rest energy, and so the rest mass, 

is in general not additive, and you already know that. 

Consider a space colony built inside a huge spherical shell. Assume that there are a lot of shuttles 

flying around inside it. There might also be trains running on the inside surface of the shell, but 

no automobile cars (why?). The rest energy (mass) of the colony is the energy (mass) of the col-

ony as measured in a frame of reference, relative to which the colony as a whole (that is, the 

shell) is stationary. Had the colony been empty, this would only have been due to the shell alone, 

but now the shuttles and trains inside it will contribute to its rest energy (mass). They will do so 

using their rest energies (masses), of course, but since the rest energy (mass) of the colony is a 

measure of its internal energy, it clearly has to include the kinetic energy of the shuttles and 

trains as well (relative to the shell). Thus, the rest mass of the colony is greater than the sum of 

the rest masses of the empty shell, shuttles, and cars, individually. 
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Similarly, a container of gas has a rest mass greater than the sum of the rest masses of the empty 

container and all the constituent molecules, since the molecules are not at rest relative to the 

container of the gas, and so has kinetic energy relative to the container, and thus are contrib-

uting to the internal energy of it. 

I said you already knew this, and you did. When considering the inelastic billiard-ball collisions 

above, we concluded that the rest energy (mass) of each ball increased at the collision, due to the 

increase in thermal energy. But thermal energy is ‘simply’40 kinetic (and potential) energy of the 

constituent particles of the body. Hence, if you compare the ball’s constituent particles with the 

shuttles (and trains) of the colony’s shell, then they are moving slowly before the collision, and 

are moving rapidly afterwards.  

3.4.10.3 Other Forms of Energy 

Thus far we have concluded that      
2 for a stationary body and       

2 for any (station-

ary or non-stationary) body, where   is the total energy and   the rest mass (   the relativistic 

mass) of the body. This is a restrictive form, or a special case, of the mass–energy equivalence. 

The full form of the equivalence, that we will simply postulate, states that       
2 applies to 

every system of total energy   or total relativistic mass   . For instance, it applies to the elec-

tromagnetic field in empty space. Hence, this field has mass! 

The Mass—Energy Equivalence 

Let a region in space have total relativistic mass   . Then the total energy in the region is 

      
2. Conversely, if a region in space has total relativistic energy  , then the total relativ-

istic mass in the region is      
 2 . 

As an example, consider a box the inside walls of which are ideal mirrors. If there is light in the 

box, the box is heavier than it would be if there were not as much light in the box. 

Notice that we already have concluded the mass–energy equivalence in the case where the sys-

tem contains only of material bodies. We can now shed some additional light on the relativistic 

mass. In fact, the relativistic mass of a body is equal to the rest mass plus the mass associated41 

with the kinetic energy of the body. Indeed, this statement is 

    +     
 2   + ( ( )   )   

2  
 2   +  ( )     ( )  

which is true by definition. 

Combining Postulate NN with the Mass–Energy Equivalence, we have 

Corollary NN 

The total relativistic mass of an isolated system is a fundamentally conserved quantity. 

Indeed, if mass and energy is the same thing (up to the unit), then conservation of either one 

implies conservation of the other one. 

                                                             
40 We neglect all quantum effects. 
41 If   is some quantity with the dimension of energy, and   is some quantity with the dimension of mass, 
we say that the quantities are associated /with one another/ iff      

2. Thus, it is always true, by defini-
tion, that the rest (or relativistic) mass of an object is associated with the rest (or total) energy of the same 
object. 
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As an example, consider the annihilation of an electron and a positron. In the centre of mass 

frame, they both approach each other with equal speed. Before the annihilation, they have both 

relativistic mass and total energy, related by       
2. Since they are in motion, the total energy 

is equal to the rest energy plus the non-zero kinetic energy, and the relativistic mass is greater 

than the rest mass. When they meet, they both disappear and two photons are created. These are 

receding from each other. Indeed, since the momentum was zero before the annihilation, it has 

to be zero afterwards as well. [Compton scattering shows that photons do have momentum.] The 

total relativistic energy is conserved, so the frequency of the photons is determined. But the rela-

tivistic mass is also conserved: the photons have energy, and therefore they have relativistic 

mass. In fact, the total relativistic mass of the two photons equals the total relativistic mass of 

the two leptons. 

A common misconception is that      
2 states that mass can be converted into energy and vice 

versa. This is wrong. Both (total relativistic) energy and (relativistic) mass are conserved; in fact, 

they are essentially the same thing. When the electron and positron annihilate, mass is not de-

stroyed and energy created. The energy of the photons did already exist in the energy 

(rest + kinetic) of the leptons, and the (relativistic) mass of the leptons is later on associated 

with the photons. Moreover, this is not only a way of seeing things; recall that a box full of pho-

tons is heavier (as shown by a hypothetical, unreasonably high-accuracy laboratory scale) than a 

dark box. 

However, although (relativistic) mass cannot be destroyed or created, matter can, if you define 

the term properly. For instance, if you consider leptons to be matter, but not photons, then mat-

ter was clearly destroyed in the annihilation. Conversely, in pair production, matter is created. 

The conversion factor   
2 in      

2 if a huge number, namely, 

  
2                    2  2⁄   

If one gram of matter was converted to some useful form of energy (such as electrical energy), 

we would thus obtain an amount 

     
2        

of useful energy. If you loaded this amount of energy into a battery or capacitor of some sort, it 

would become one gram heavier. 

As a final example, let one body emit a beam of photons, which are absorbed by another body. If 

the total energy   is transmitted, that is, moved from the first body to the latter one, then the rest 

mass of the first body will decrease by an amount    
 2 while the rest mass of the second will 

increase by the same amount.42 During the process, a volume in space between the bodies that is 

containing photons with a total energy of    will have relativistic mass     
 2. Einstein himself 

wrote in his 1905 paper (Einstein, 1905), 

Wenn die Theorie den Tatsachen entspricht, so iibertragt die Strahlung Trtigheit 

zwischen den emittierenden und absorbierenden Korpern. 

(If the theory corresponds to the facts, radiation conveys inertia between the emit-

ting and absorbing bodies.) 

                                                             
42 Notice that, if you only consider one of the objects in its rest frame, the first one, say, then its total ener-
gy (its rest mass=its relativistic mass) will decrease. But this does not contradict Corollary NN, of course, 
because if the system emits radiation to the surroundings, then clearly it is not isolated. 
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3.4.11 The Energy Triangle 

Consider a matter particle of mass   and velocity  . Then the momentum is 

   ( )   

and the energy is 

   ( )   
2  

Therefore 

(  )2 + (   
2)2   ( )2 2 2 2 + 2  

  
 2 2 2

  
 2

 2

+ 2  
  

 2 2  

 2   2
+ 2  

  

 (
 2

 2   2
+  ) 2  

  (
 2

 2   2
) 2  

   ( )2 2  
   2 

and we have 

Proposition NN 

Let a matter particle have rest mass   and velocity  . Let   and   be its total energy and mo-

mentum, respectively. Then 

 2  (   
2)2 + (   )

2  

Notice that the first term is due to the rest energy and the second is due to the kinetic energy. 

[But        because  2  (  +   )
2    

2 +   
2.]. If the particle is at rest relative to the ob-

server,     and so we recover Einstein’s      
2. 

In the spirit of relativity theory, we now generalise this to apply to any particle, including ‘mass-

less’ particles such as photons. [Thus, we postulate it.] We need to explain why we put quotation 

marks around ‘mass-less’. Classically, a photon is said to be massless, and even in relativity theo-

ry, we say that the photon has zero rest mass. But a photon has energy, and so, by the Mass–

Energy equivalence, it has relativistic mass. But how is this possible? Indeed,        

 ( )       ? The ‘explanation’ is that a photon travels with the speed of light. Hence 

 ( ) is not defined. However, it might seem ‘plausible’ that      ( ) is finite if   is ‘infinitely 

small’ and  ( ) is ‘infinitely big’. Anyhow, we postulate that a photon travels with the speed of 

light (this is the second of Einstein’s postulates), has zero rest mass and finite energy 

(=relativistic mass). Also, we postulate (↑) for photons, too, which in the case of     reads 

       

Notice that the mass–energy equivalence dictates 

      
2 

and so 

     
        

which is the same relation between momentum, relativistic mass, and speed, as holds for mate-

rial particles. We end this section by remarking that 

     ( )   
2 

by our non-stringent discussion above implies 
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Observation NN 

A particle with finite (and non-zero) energy has zero rest mass if and only if it travels with the 

speed of light. 

By the kinematics of special relativity, if a speed is found to be equal to the speed of light in one 

frame, then the speed is equal to the speed of light in any frame. In particular, a photon has the 

speed of light in any frame, and so Observation NN tells us that the rest mass of a photon is the 

same in any frame, which is consistent with the frame-independent nature of the rest mass as 

known from the dynamics of matter particles. 

By the way, the title of this subsection is the name of a simple and self-explanatory mnemonic: 

 

Figure 31. The Energy Triangle. 

3.4.12 Summary 

This long section has been concerned about the dynamics of special relativity. We have devel-

oped the standard theory for special relativity, and I have tried to do it in such a careful way as 

possible. We have shown which laws of conservation are compatible with Einstein’s postulates, 

and then we have postulated these laws. We have then seen that at least a weak form of the 

mass–energy result follows from these postulates, and then we generalised this result in a way 

that seemed ‘natural’. The dynamical theory thus obtain has to be tested against experimental 

observation. We have suggested a dynamical theory, many major results of which have not been 

entirely proven from more fundamental postulates, and therefore, only experimental verifica-

tion can make us certain of the validity of the theory. Fortunately, the special theory of relativity 

is used in every-day physical experiments and consumer electronics, and so we are fairly confi-

dent on its validity. 

The Energy Triangle 

𝑚𝑐 
2 

𝑝𝑐 
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3.5 Relativistic Electrodynamics 

We will now continue the discussion on electrodynamics. Recall that Maxwell’s equations are 

not invariant under a Galilean transformation, and that this was a major theoretical problem in 

Newtonian mechanics, and, therefore, a motivation for special relativity. We will now show that 

the Lorentz transformation comes to rescue. Consider the same experimental setup as we used 

when discussing the Galilean transformation, that is, Figure 27. For convenience, we repeat it 

here: 

 

We will perform the same kind of analysis as we did in the Newtonian case, but we will now in-

clude relativistic effects, that is, we will use the Lorentz transformation instead of the Galilean 

transformation when switching between ℱ1 and ℱ2. The situation in ℱ1 is the same now as in 

the Newtonian case; there is only the electrostatic field 

   
 

     
 ̂  

at the test particle. Thus, the Lorentz force law yields the force 

   
  

     
 ̂  

on the particle. But what does ‘force’ mean? In this section, we will use the concept of relativistic 

force (cf. Section 3.4.4). But in this case it doesn’t really matter, for     and so  ( )   . 

Hence, 

   
  

      
 ̂   

Let us now investigate the setup from the point of view of ℘ℱ2. Length contraction will increase 

the linear charge density [unit C/m] by a factor of  ( ). Thus, the observed charge density is 

    ( )   

The electrostatic field is now 

    
  

     
 ̂2   

 ( ) 

     
 ̂2 

since the vertical distance   is unaffected by the standard-configuration Lorentz transformation. 

In ℘ℱ2, the wire is observed to carry a constant current 

         ( )   

corresponding to a scalar current of 

  | |   ( )   

ℱ1 

�̂�  �̂�  

�̂�  

𝑂  

ℱ2 
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𝑂2 

𝐯 

𝑞 
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and thus producing a non-vanishing magnetic field 

   
   

   
 ̂2  

The Lorentz force is therefore 

      +  (  )      
  ( ) 

     
 ̂2

⏟        
              

+
     

   
 ̂2⏟    

              

  
  

  ( )    
 ̂2  

Using the relation between the relativistic force and the acceleration (↑), 

 
 ( ) 

  
2
(     )(  ) +   ( )    

  

  ( )    
 ̂2 

where    is the acceleration relative to ℱ2. Since   (     ) 

        
  

and so 

 
 ( ) 

  
2 (    

 )(   ̂2) +   ( ) 
   

  

  ( )    
 ̂2 

which is solved to yield 

    
  

  ( )2     
 ̂2  

 ( )2

  
2    

   ̂2  

In components, 

  
    

  
   

 ( )2

  
2    

   

  
   

  

  ( )2     
  

clearly, 

  
     

Thus, 

  
    

  
    

  
   

  

  ( )2     
  

Now we have found the acceleration of the particle both as seen from ℘ℱ1 and from ℘ℱ2. When 

we did this within the framework of Newtonian mechanics, we found the result incompatible 

with the Newtonian transformation of acceleration (the Galilean, which is simply     ). We 

will now see if our relativistic result is compatible with the relativistic (Lorentz) transformation 

of acceleration, that is, with Proposition NN. 

Transforming (↑) back to ℱ1, we find 
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  ( )2     

 ( )2 (  
 2
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2  

 
  

  ( )2     

 ( ) 2
  

  

      
  

Compare this with the expected result (↑) above; they are identical. Thus, we see that special 

relativity does resolve this paradox. Special relativity, and not Newtonian mechanics, seems per-

fectly compatible with the theory of electromagnetism. 

3.5.1 The Rise of Magnetism 

In this section, we will show that electric and magnetic forces are in fact not two different kinds 

of forces. Instead, we will find that, in a sense, there are only electric forces, and that the magnet-

ic ‘forces’ are nothing more than ‘relativistic corrections’ of them. 

Even though we have shown electrodynamics to be incompatible with Newtonian physics, it 

does not require special relativity to appreciate the fact that an electromagnetic field that some 

observer considers purely electric might be considered purely magnetic, or electric + magnetic, 

by some other observer. In fact, this follows immediately from the Maxwell theory, and we saw it 

already in that chapter. However, now we will be able to show this without the use of Maxwell’s 

theory. 

More precisely, we will assume that there are only electric forces, that is, we forget about every-

thing related to magnetism. The electric forces are described by Coulomb’s law or the vector-

analytical form of it, namely, Gauss’ law (the Maxwell equation): 

    
 

  
  

We will then show that there cannot exist any electric force at all, unless there exists also some 

new kind of force, which we will identify with the magnetic force. We will take a slight detour, 

however: To point out that magnetism is really a relativistic correction, we will first do the anal-

ysis using mere Newtonian mechanics. We will see that, within the Newtonian theory, electric 

forces can indeed live by themselves. 

Consider so once again an infinitely long wire along the   axis. Let its linear charge density 

[C/m] be  , and let it carry no current relative to ℱ1 ∈ ℘ℱ1. A single charge (initially) at rest a 

distance   below the wire will thus experience the electric force 

   
  

     
 ̂  

giving it an acceleration (recall that we are using the Newtonian concept of force) 

  
 

 
   

  

      
 ̂   

Now consider again the frame ℱ2 ∈ ℘ℱ2, moving with velocity     ̂ relative to ℱ1, just as be-

fore. In this frame (recall that there is no length contraction in the Newtonian theory, and that 

we are neglecting the magnetic force!), the force is still 

    
  

     
 ̂2  

Needless to say, the acceleration    (  ⁄ )   is also the same. Thus, there is no problem with a 

lone electric force [in this case, at least]. Now, let us do this ‘for real’, considering the full set of 
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relativistic effects. In ℱ1, the expression for the electric force is still the same. The acceleration is 

now given by the relativistic force equation (↑), but, as we saw earlier, since  ( )   , no relativ-

istic effects reveal themselves, so still 

   
  

      
 ̂   

From the point of view of  ℱ2, however, the linear charge density is     ( )  so that the elec-

tric force 

    
  ( ) 

     
 ̂2  

This (we think)                                                                  ‘         ’  How-

ever, since the particle is now moving relative to the frame, we need to be careful when using the 

relativistic force equation. This is literally 

 
 ( ) 

  
2
(     )(  ) +   ( )    

  ( ) 

     
 ̂2  

Working out the components as we did in the last section, we end up with 

  
    

  
    

  
   

  

      
  

This is the (instantaneous) acceleration of the particle relative to ℱ2. But considering the accel-

eration relative to ℱ1 and applying Proposition NN, we know that the acceleration relative to ℱ2 

has to be 

     

     

    
  

  ( )2     
 

which clearly contradicts (↑). Thus, when full relativistic effects are considered, we see that 

there cannot exist electric forces, unless (for instance) they are also accompanied by some ‘new’ 

type of force. Apparently (as we saw in the last section), the force of magnetism fits just perfect-

ly, but perhaps there are other possibilities? To rule them out, we will continue our discussion 

by deriving the expression for the magnetic force (in this case). 

The acceleration relative to ℱ2 has to be 

    
  

  ( )2     
 ̂2  

Using the relativistic force equation (↑), this implies that the relativistic force on the particle is 

necessarily 
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 ( ) 

  
2
(    ) +   ( )   

  
 ( ) 

  
2 (    

 )(   ̂2) +   ( ) 
  

  
 ( ) 

  
2
(    )(   ̂2) +   ( ) ( 

  

  ( )2     
 ̂2)  

  
  

  ( )    
 ̂2  

Of course, we can write this as 

    
  

  ( )    
 ̂2   

  

     
(
 

 ( )
)  ̂2   

  

     
( ( ) + (

 

 ( )
  ( )))  ̂2)  

  
  ( ) 

     
 ̂2 +

 2  ( ) 

    
2   

 ̂2           +           

The first term we recognize as the electric force, but we are ‘astonished’ to find a second term. 

But, if we define 

   
 

  
2  

 

then the second term reads 

         
   

2  ( ) 

   
 ̂2  

     

   
 ̂2 

which is precisely the magnetic force on the charge, as seen in (↑), where the constant    is also 

equal to    
2  ⁄ . 

With some ingenuity and effort, the reader can probably himself construct further examples of 

electric systems in which special relativity requires the electric forces to be accompanied by 

magnetic forces that agree with the Maxwell theory. 

You could possibly say that the force of magnetism, which was known empirically during the 19th 

century, has now been derived using the special theory of relativity. However, this is not entirely 

the case, since the theory of relativity is based on Einstein’s postulates, the first of which (the 

constancy of the speed of light) was to a big extent suggested by the Maxwell theory of electro-

magnetism. Nevertheless, it is not unimaginable that one can appreciate the axioms of special 

relativity without prior knowledge of magnetism. 
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3.6 Four-Vector Formulation and Spacetime Geometry 

In the previous sections, we have in great detail investigated the physical basis of special relativ-

ity, and the transition from Newtonian physics to special relativity. Although transparent, the 

investigation was at times messy and gave rise to rather awkward formulae. We also had to 

work a lot with the issue of compatibility; for instance, we spent quite some time investigating 

whether or not the relativistic law of momentum conservation is compatible with the axioms of 

special relativity. This we had to do, for the result is nontrivial, and, in addition, should we have 

found the law not to be compatible with the axioms, then we would have had to abandon it alto-

gether. 

Put differently, we were given an equation 

    2 

between two vectors relative to some inertial frame ℱ1 ∈ ℘ℱ1. In this case, the vectors are mo-

menta. Since the momentum is a frame-dependent quantity, there is no a priori reason to believe 

that the vector equation 

  
   2

  

should hold in some other frame ℱ2 ∈ ℘ℱ2, where   
  and  2

  are the corresponding momenta 

relative to ℱ2. It took quite some effort to show this, as we did in Theorem NN. 

In this chapter, we will reformulate the special theory of relativity using spacetime and four-

vectors, a new kind of mathematical object. Just as we describe nature using numbers and three-

component spatial vectors in the Newtonian theory, in special relativity, we describe nature us-

ing numbers and four-vectors. This new formulation will generally be more succinct, and – most 

importantly – will resolve the problem of compatibility entirely. Indeed, if two four-vectors are 

equal in some inertial frame, then they will be equal in any other inertial frame connected to the 

first frame by a Lorentz transformation. 

3.6.1 Spacetime 

The entanglement of space and time suggests that we should treat space and time not as two 

separate objects, but rather as a single entity, which we will call spacetime. By definition, 

spacetime   is the set (with the structure of a differentiable manifold – we’ll get there) of all 

possible events, an event being a ‘place’ in spacetime where a particle can exist. In the general 

theory of relativity, we will pursue this idea very far, but in both Newtonian physics and special 

relativity, you can introduce a coordinate system in   such that an event is a pair (   ) of a time 

coordinate   (in the physical sense) and three spatial coordinates   (     ). In other words, 

          

is a real vector space, but the remarks of Section Fel! Hittar inte referenskälla. still apply. We 

eed a coordinate system in spacetime. We will therefore assume that we have settled for some 

inertial frame ℱ1 of reference. In particular, this means that have chosen to identify some point 

in spacetime with the origin (       ) of   . We have also chosen some unit of time to corre-

spond to a unit change in the first (time) coordinate, and we have chosen three geometric spatial 

vectors to correspond to the directions  ̂  (       ),  ̂  (       ), and  ̂  (       ) of   . 

Of course, since we consider spacetime as a four-dimensional space (essentially   ), we could 

introduce a ‘pathological’ basis that intermix the temporal coordinate with the special coordi-

nates. This is an obvious mathematical idea and even the case in Newtonian ‘spacetime’. Indeed, 
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assume pure Newtonian physics, and consider spacetime          . Choose to identify 

the direction  ̂  (       ) with the direction of time, and let  ̂  (       ),  ̂  (       ), and 

 ̂  (       ) be an orthogonal spatial basis in the Newtonian sense. Thus, at each time  , space 

is the subset 

   { }      ( ̂  ̂  ̂)  

Let   ( ̂  ̂  ̂  ̂) be the full spacetime basis. This is a ‘normal’, or ‘non-pathological’, basis. 

Then define a new basis   ( ̂  ̂  ̂  ̂ ) by 

   (

    
    
    
    

)   

this is also a basis for   . However, now the new first coordinate,   , does not correspond to the 

physical concept of time, and the new basis vectors  ̂ ,  ̂ , and  ̂  does not form a Newtonian spa-

tial basis. For example, consider the two events (       ) and (       ) relative to the ‘normal’ 

basis. These occur at the same time [and time is absolute in Newtonian physics]. But their coor-

dinates relative to our new and ‘pathological’ basis are (        ) and (        ), respectively. 

Thus, of the four coordinates in our new coordinate system, clearly none represents time by it-

self. From now on, and for the remainder of the chapter on special relativity, we will only be us-

ing coordinate systems in spacetime such that the first coordinate, by itself, represents time, and 

the remaining three coordinates are purely spatial. Such a coordinate system, if the frame is in-

ertial, and the spatial coordinates are Cartesian, will be called a Minkowski system (or frame). 

3.6.1.1 The Minkowski ‘Inner Product’ 

We will now introduce a function ⟨   ⟩       by 

⟨   ⟩  ⟨(           ) (           )⟩                       

Clearly, ⟨   ⟩ is not an inner product on    in the usual sense, because ⟨   ⟩ might be negative, 

and might be zero even if    . Nevertheless, we will still call it an inner product. This is stand-

ard, and very convenient, in relativity theory. We will also use this inner product to form a norm-

square in the usual way. However, one must remember that all of these objects are defined using 

the relaxed condition on the inner product. In particular, this means that the norm-square of a 

vector might be negative, and a non-zero vector might be of zero norm. 

Definition NN 

On spacetime, we introduce the inner product 

⟨   ⟩  ⟨(       2   ) (       2   )⟩             2 2       

and the norm-square 

‖ ‖2  ⟨   ⟩  

Notice that this inner product is not an inner product in the usual sense, since it violates the re-

quirements ⟨   ⟩         and ⟨   ⟩      (       ). 

The inner-product space (  ⟨   ⟩) is known as Minkowski space or Minkowski spacetime. If 

⟨   ⟩   , then   and   are said to be orthogonal. If ‖ ‖2    
2, then   is a unit vector. 
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We make 

Definition NN 

Let 

      (          )  (

    
     
     
     

) 

be the Minkowski metric.43 

as to obtain 

Proposition NN 

Let   and    . Then 

⟨   ⟩       (     2   )(

    
     
     
     

)(

  
  
 2
  

)  

3.6.1.2 The Worldline of a Particle 

Consider a particle. During its existence, it will trace out a curve in spacetime. This curve, which 

is called the worldline    of the particle, is precisely defined by 

   {(       )                                  (     )          }  

The worldline can clearly be parameterised with the coordinate time  , that is, there exists func-

tions    ( ),    ( ), and    ( ) such that the particle is located at (   ( )  ( )  ( )) at 

coordinate time  . However, every coordinate time   corresponds to a proper time  , as recorded 

by a clock attached to the particle. It will turn out to be convenient to use the proper time as the 

parameter, and not the coordinate time. (It is not important what the origin of the proper time 

is.) 

3.6.2 The Lorentz transformation, Four-Vector, and Lorentz Scalars 

We first make 

Definition NN 

Assume that (       ) are the coordinates of some event relative to a Minkowski frame ℱ1. Then 

the four-coordinates of the event are (         ). 

There is an obvious bijection between the set of possible coordinates and the set of possible 

four-coordinates. Hence, in principle, they are the same. However, it will turn out that the four-

coordinates are neater to work with formally compared with the ordinary coordinates, so from 

now on we will mainly use this new concept. 

                                                             
43 The word ‘metric’ will be explained in the chapter on geometry. Until then, you might call   the ‘Min-
kowski matrix’. 
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Now, let ℱ1 ∈ ℘ℱ1 and ℱ2 ∈ ℘ℱ2 be two inertial frames in standard configuration with relative 

speed  . Assume that a particle has four-coordinates (         ) relative to ℱ1, and four-

coordinates (   
          ) relative to ℱ2. Then 

(

   
 

  

  

  

)  (

 ( )   ( )   ⁄   

  ( )     ( )   
    
    

)(

   
 
 
 

) 

according to the Lorentz transformation (Theorem NN). 

Definition NN 

The Lorentz transformation       has the matrix 

  (

 ( )   ( )   ⁄   

  ( )     ( )   
    
    

)  

Notice that the Lorentz transformation   is an endomorphism on spacetime, given by a symmet-

ric matrix.44 Recall that   connects two inertial frames in standard configuration. Hence, it is not 

the case that   connects an arbitrary pair of inertial frames. Although when we speak of ‘the Lo-

rentz transformation’ we refer to   as given above, in the most general sense of the word, a Lo-

rentz transformation is, by definition, a function connecting any pair of inertial reference frames 

with the same origin in spacetime. The set of all Lorentz transformations form a group under 

composition, called the Lorentz group. The set of transformations connecting any pair of inertial 

reference frames also forms a group, called the Poincaré group. Clearly, the Lorentz group is a 

proper subgroup of the Poincaré group. 

From a physical point of view, it should be enough to investigate the theory by only considering 

the standard-configuration Lorentz transformation  . Indeed, any transformation in the Poinca-

ré group can be written as a composition of spacetime translations, spatial rotations, and  , and 

of these three types of transformations, only the last one should be of any non-trivial physical 

significance. For simplicity, we will therefore restrict our analysis to the case of frames connect-

ed via  . 

Definition NN 

Let      be a 4-tuple of numbers relative to an inertial frame ℱ1, and let       be the corre-

sponding 4-tuple relative to any other inertial frame ℱ2 in standard configuration with ℱ1. If 

      

where   is the Lorentz transformation between ℱ1 and ℱ2, then   is called a four-vector, and is 

written  ⃗. 

                                                             
44 We can already now appreciate the reason why the four-coordinates are more ‘natural’ than the usual 
coordinates. For one thing, every component of the four-coordinates has the same unit, namely, the metre. 
In addition, it is clear from Theorem NN that the ‘Lorenz transformation’ between the usual coordinates is 
not given by a symmetric matrix. 
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That is, the arrow above a 4-tuple reminds us that the 4-tuple transforms according to (↑) be-

tween two inertial frames in standard configuration. We will often denote a four-vector 

 ⃗  (    )  (       2   ) 

where   is an ordinary spatial vector in   , that is,   (    2   ). We will also call   the ‘spatial 

part’ of  ⃗. The reason why this is convenient will reveal itself in just a few lines of text. From 

Definition NN we immediately have 

Corollary NN 

The four-coordinates 

 ⃗  (     )  (         ) 

of an event (relative to some frame ℱ1) make up a four-vector. 

Notice that the spatial part   (     ) is the ordinary spatial position vector relative to ℱ1. We 

also make 

Definition NN 

The four-momentum of a particle with speed  , total energy  , and momentum   (        ) is 

 ⃗  (
 

  
  )  (

 

  
         )  

Theorem NN then reveals that 

Corollary NN 

The four-momentum of a particle is a four-vector. 

Thus, from now on, we will write the four-coordinates as  ⃗ and the four-momentum as  ⃗. Notice 

that the spatial part of the four-momentum is the classical momentum. 

Definition NN 

A scalar quantity that is invariant under a Lorentz transformation (in other words, has the same 

value in any inertial frame of reference), is called a Lorentz scalar. 

Examples of Lorentz scalars include the rest mass   and charge   of a particle and the speed of 

light   . However,  ,   ,   ,  ,  ,  ,  ,  ,   ,   , … are clearly dependent upon the frame of refer-

ence, and are therefore not examples of Lorentz scalars. It is clear from the definition that any 

function of any number of Lorentz scalars is again a Lorentz scalar. For instance, the quantity 

         is a Lorentz scalar, as is the rest energy      
2. 

For future needs, we make 

Proposition NN 
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Proof 

   (

 ( )   ( )   ⁄   

  ( )     ( )   
    
    

)(

    
     
     
     

)  

 (

 ( )  ( )   ⁄   

  ( )      ( )   
     
     

) 

while (notice that     is trivially found from   by making the substitution     ) 

     (

    
     
     
     

)(

 ( )  ( )   ⁄   

 ( )     ( )   
    
    

)  

 (

 ( )  ( )   ⁄   

  ( )      ( )   
     
     

)  

∎ 

Corollary NN 

       

3.6.3 Properties of Four-Vectors 

The whole point of four-vectors is contained in the following result, which is almost immediate. 

Theorem NN 

Equality between four-vectors does not depend on the inertial frame of reference. That is, if  ⃗ 

and  ⃗⃗ are four-vectors relative to ℱ1, and   ⃗⃗⃗⃗⃗ and   ⃗⃗ ⃗⃗  are the corresponding four-vectors relative 

to ℱ2, then 

 ⃗   ⃗⃗    ⃗⃗⃗⃗⃗    ⃗⃗ ⃗⃗   

Let ℱ1 and ℱ2 be two different frames in standard configuration. Then the hypothesis 

 ⃗   ⃗⃗    ⃗    ⃗⃗ 

where   is the Lorentz transformation connecting ℱ1 to ℱ2. But since  ⃗ is a four-vector, 

  ⃗⃗⃗⃗⃗    ⃗ 

and similarly for  ⃗⃗. Thus 

 ⃗   ⃗⃗    ⃗⃗⃗⃗⃗    ⃗⃗ ⃗⃗   

 ∎  

Notice in particular how it is now obvious that the four-momentum conservation law 

  ⃗⃗⃗⃗⃗   2⃗⃗⃗⃗⃗ 
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is compatible with the axioms of special relativity. Indeed, being an equality of four-vectors, if it 

is valid in some frame, then it is valid in any other frame. Since the components of the four-

momentum are the energy (divided by a constant) and the relativistic momentum  , it is clear 

that both the law of energy conservation and the law of relativistic momentum conservation are 

compatible. 

Notice also that is not a coincidence that we found out that  ⃗ is a four-vector (in Theorem NN, 

essentially) while trying to display the compatibility of the aforementioned laws of conservation. 

Finally, notice that the ‘entanglement’ between space and time as illustrated by the transfor-

mation of the four-coordinates is identical to the entanglement between energy and momentum 

as illustrated by the transformation of the four-momentum. 

At this point, the reader might object that the introduction of four-vectors doesn’t really yield 

anything. Indeed, so far it has only given us a more fancy way of saying that a law of conservation 

is compatible with the Lorentz transformation. However, there is more than that to it. We will 

see that we can combine four-vectors into new four-vectors, and this will help us obtain many 

more results. In addition, this new language will help to bridge the gap to more advanced physi-

cal theories, such as the general theory of relativity 

The following simple result will take us to the former benefit of four-vectors: 

Proposition NN 

Let  ⃗ and  ⃗⃗ be four-vectors, and let   be a Lorentz scalar. Then 

(1)  ⃗   ⃗ +  ⃗⃗ is a four-vector, 

(2)  ⃗    ⃗ is a four-vector, and 

(3) ⟨ ⃗  ⃗⃗⟩ is a Lorentz scalar. 

If   is a Lorentz scalar that may depend on time, and  ⃗ is a four-vector that may depend on time 

too, then 

(4) 
  ⃗⃗

  
 is a four-vector. 

Proof 

Assume that  ⃗ and  ⃗⃗ are four-vectors relative ℱ1, and let   ⃗⃗⃗⃗  and   ⃗⃗⃗⃗  be the corresponding four-

vectors in ℱ2. 

(1) and (2) are simple: 

  ⃗   ( ⃗ +  ⃗⃗)    ⃗ +   ⃗⃗    ⃗⃗⃗⃗ +   ⃗⃗⃗⃗    ⃗⃗⃗ ⃗  

  ⃗   (  ⃗)     ⃗     ⃗⃗⃗⃗    ⃗⃗ ⃗⃗   

When it comes to (3), we have 

⟨  ⃗⃗⃗⃗    ⃗⃗⃗⃗ ⟩  ⟨  ⃗   ⃗⃗⟩  (  ⃗⃗)
 
 (  ⃗)   ⃗⃗      ⃗   ⃗⃗     ⃗   ⃗⃗   ⃗  ⟨ ⃗  ⃗⃗⟩ 

using Corollary NN. Finally, 
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 (
  ⃗

  
)   (    

    

 ⃗( +   )   ⃗( )

  
)     

    

  ⃗( +   )    ⃗( )

  
    
    

  ⃗⃗⃗⃗ ( +   )    ⃗⃗⃗⃗ ( )

  
 

 
   ⃗⃗⃗⃗

  
  

 ∎ 

Corollary NN 

Any linear combination of four-vectors is a four-vector. In addition, the norm of any four-vector 

is a Lorentz scalar. 

3.6.4 The Four-Vectors of SR Dynamics 

We have seen that the four-coordinates  ⃗ of an event (such as the spacetime position of a parti-

cle) is a four-vector. The four-coordinates generalise the radius (position) vector of Euclidean 

space    to spacetime. The analogue of the displacement vector     2     is the spacetime 

interval four-vector: 

Definition NN 

Let ℱ1 be some inertial frame, and consider two events  ⃗  (         ) and  ⃗̃  (   ̃  ̃  ̃  ̃). 

The (spacetime) separation between the two events is the four-vector 

  ⃗⃗ ⃗⃗ ⃗   ⃗̃   ⃗  (             )  

The spacetime separation is clearly a four-vector, since it is a linear combination of two four-

vectors. Now, let us return to the four-coordinates of a single particle. The worldline is the image 

of the parameterisation function    ⃗( ), where   is the proper time of the particle. By Proposi-

tion NN, the derivative 
  ⃗

  
 is too a four-vector. This is the four-velocity of the particle. 

Definition NN 

Let  ⃗ be the four-coordinates of a particle, and let   be the proper time parameter of the parti-

cle’s worldline. Then 

 ⃗⃗  
  ⃗

  
 

is the four-velocity of the particle. 

 

Corollary NN 

Let  ⃗  (     ) be the four-coordinates relative to some Minkowski frame ℱ1. Then the four-

velocity, relative to this frame, is 

 ⃗⃗   ( )(    ) 

where   (        ) is the usual three-velocity. 
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Proof 

 ⃗⃗  
  ⃗

  
 
 

  
(         )  (

 

  
(   ) 

  

  
 
  

  
 
  

  
)  (  

  

  
 
  

  
 
  

  
 
  

  
 
  

  
 
  

  
 
  

  
)  

 (   ( )    ( )    ( )    ( ))   ( )(           )   ( )(    ) 

 ∎ 

Notice that the spatial part of the four-velocity is not the classical three-velocity  , but rather 

 ( ) . Nevertheless, as one might almost expect, we have 

Proposition NN 

Let  ⃗⃗ be the four-velocity and  ⃗ the four-momentum of a particle. Then 

 ⃗    ⃗⃗ 

where   is the rest mass of the particle. 

Proof 

Let ℱ1 be Minkowski coordinates. Then, 

 ⃗  (
 

  
  )  

On the other hand, 

  ⃗⃗    ( )(    )  

But 

   ( )   
2    ( )   

and so the proposed equality in ℱ1 is immediate. But since both the right-hand side and the left-

hand side are four-vectors, equality holds in any inertial frame, and so the four-vector equation 

holds. ∎ 

We could have defined the four-momentum as   ⃗⃗. Had we done so, we would have been given 

the fact that the 4-tuple of numbers (
 

  
  ) is a four-vector for free, by Proposition NN, because 

  is a Lorentz scalar. In other words, the compatibility of the (relativistic) energy and momen-

tum conservation laws would have been trivial. By now, it is irresistible to make 

Definition NN 

The four-acceleration of a particle with four momentum  ⃗ is 

 ⃗  
  ⃗⃗

  
  

The four-force on such a particle is 

 ⃗  
  ⃗
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For a moment, restrict attention to the common case where the rest mass of the particle remains 

constant (at least for the duration of the investigation of it). Since 

 ⃗    ⃗⃗ 

where   is a constant, we have, trivially, 

 ⃗  
  ⃗

  
 
 

  
(  ⃗⃗)   

  ⃗⃗

  
   ⃗ 

precisely as in Newtonian mechanics, where      with constant  , too. 

Corollary NN 

Let ℱ1 be a Minkowski frame. Then 

 ⃗  (
 ( ) (   )

  
  ( )2 +

 ( ) (   )

  
2  ) 

and, assuming the rest mass   is constant, 

 ⃗  (
 ( )

  
(   )  ( ) ) 

where   is the relativistic force. 

Proof 

 ⃗  
  ⃗⃗

  
 
 

  
( ( )(    ))  

 

  
 ( )  (    ) +  ( )

 

  
(    )  

 
 

  
 ( )  

  

  
 
  

  
 (    ) +  ( )  

 

  
(    )  

  

  
 

 
 

  
2 (  

 2

  
2)
 2⁄
 
   

 
  ( )  (    ) +  ( )  (   )   ( )  

 
 ( ) (   )

  
2  (    ) +  ( )

2(   )  

 (
 ( ) (   )

  
  ( )2 +

 ( ) (   )

  
2  ) 

since 

  

  
 
 

  
| |  

 

  
√  

2 +   
2 +   

2  
 

 
(  
2 +   

2 +   
2)
  2⁄

 (     +      +      )  
   

 
  

Thus 

 ⃗  
  ⃗

  
 
 

  
(  ⃗⃗)   

  ⃗⃗

  
 (
  ( ) (   )

  
   ( )2 +

  ( ) (   )

  
2  )  

 (
 ( )

  
[  ( )    ]  ( ) [  ( ) +

  ( ) (   )

  
2  ])  (

 ( )

  
[   ]  ( ) ) 

according to Proposition NN. 

 ∎ 
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3.6.5 The Lorentz Scalars 

According to Proposition NN and its corollary, the scalar product between any two four-vectors, 

and thus, in particular, the norm of a four-vector, is a Lorentz scalar. In the last subsection, we 

found a set of four-vectors, and so it is interesting to find out about the Lorentz scalars we can 

obtain from them. 

3.6.5.1 The Four-Coordinates 

Let us start with the four-coordinates, 

 ⃗  (         )  

Its norm-square is 

‖ ⃗‖2    
2 2   2   2   2 

and has to be a Lorentz scalar. That is, if relative to some other inertial frame ℱ2 with the same 

origin, the four-coordinates are 

  ⃗⃗⃗⃗  (   
          ) 

then the norm-square in this frame is 

‖  ⃗⃗⃗⃗ ‖
2
   

2  2    2    2    2 

and 

‖ ⃗‖  ‖  ⃗⃗⃗⃗ ‖  

3.6.5.2 The Spacetime Separation 

Similarly, the spacetime separation 

  ⃗  (             ) 

has norm-square 

‖  ⃗⃗ ⃗⃗ ⃗‖
2
   

2(  )2  (  )2  (  )2  (  )2 

which is a Lorentz scalar. This is given a name of its own: 

Definition NN 

Let   ⃗⃗ ⃗⃗ ⃗   ⃗̃   ⃗ be a spacetime separation. Then 

   ‖  ⃗⃗ ⃗⃗ ⃗‖
2
   

2(  )2  (  )2  (  )2  (  )2 

is called the spacetime interval between the two events  ⃗ and  ⃗̃. 

That is, all observers agree on the spacetime interval between two events, even if they do not 

agree, in general, on the coordinates of the two events, or on the coordinates of their separation. 

3.6.5.3 The Four-Velocity 

The four-velocity is 

 ⃗⃗   ( )(    ) 

with norm-square 
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‖ ⃗⃗‖2   ( )2  
2   ( )2(  

2 +   
2 +   

2)   ( )2  
2   ( )2 2  

  
2

  
 2

  
2

 
 2

  
 2

  
2

 
  
2   2

  
 2

  
2

 

   
2

  
 2

  
2

  
 2

  
2

   
2  

That is, the speed of light is a Lorentz scalar, but – of course – we already knew that! Notice in 

particular that the ‘four-speed’, that is, the norm of the four-velocity, isn’t just a Lorentz scalar: it 

is also constant! That is, any particle travels through spacetime with constant four-speed (name-

ly, the speed of light). Therefore, by Section 3.6.1.2 and Definition NN,  ⃗⃗ is a unit tangent vector 

to the worldline of the particle. 

3.6.5.4 The Four-Momentum 

By definition, the four-momentum 

 ⃗  (
 

  
  ) 

so that 

‖ ⃗‖2  
 2

  
2   

2  
 ( )2 2  

 

  
2   ( )2 2 2   ( )2 2  

2   ( )2 2 2  (  
2   2) ( )2 2  

   
2 2  

Thus, the norm of the four-momentum is 

‖ ⃗‖      

which is a Lorentz scalar (again, as we already knew). 

3.6.6 The Light Cone 

In this subsection, we will introduce the important concepts of the light cone and causality. Con-

sider an object located at a point    (        ) in space emitting a flash of light in all direc-

tions at a time   . Thus, at any later time     +      , the flash of light will make up a sphere 

   centred at    with radius     . At this time, every observer inside   will know that the object 

has emitted a flash of light, while no observer outside    could possibly know this. Indeed, they 

have not yet been hit by the flash of light, and since no traveller can travel through space with a 

speed greater than   , no one could possibly outrun the flash and warn an outside observer. This 

implies a very fundamental statement about causality in spacetime: 

Observation NN 

No information can travel through space at a speed greater than   . In particular, given any ob-

server in space, any event taking place a time    ago will be completely hidden to the observer if 

the distance   √(  )2 + (  )2 + (  )2 from the observer (        ) to the spatial position 

(     ) of the event is greater than     . 

In the above,     +    and similarly for   and  . The equation for    in space is 

(  )2 + (  )2 + (  )2    
2(  )2 
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which is a sphere of radius      centred about (        ). Thus, in spacetime,   has equation 

  
2(  )2  (  )2  (  )2  (  )2    

which is a hypercone centred at the event (            ). Since it has codimension 1, it is a 

hypersurface of spacetime. Notice that the spacetime interval between the four-coordinates 

 ⃗  (             ) and any point  ⃗ +   ⃗⃗ ⃗⃗ ⃗  (  ( +   )  +     +     +   )  (         ) 

on   is 

   ‖  ⃗⃗ ⃗⃗ ⃗‖    
2(  )2  (  )2  (  )2  (  )2     

Clearly, this is immediate from the fact that light travels with the speed of light, and serves as the 

motivation for the Minkowski inner product. Indeed, any spacetime separation four-vector   ⃗⃗ ⃗⃗ ⃗ 

belongs to exactly one of the following three classes: 

 Iff     , the separation is called ‘timelike’. 

 Iff     , the separation is called ‘lightlike’, or ‘null’. 

 Iff     , the separation is called ‘spacelike’. 

It follows immediately that we have 

Observation NN 

The separation   ⃗⃗ ⃗⃗ ⃗ between two points on the worldline of a material particle is timelike. 

The separation   ⃗⃗ ⃗⃗ ⃗ between two points on the worldline of a photon is lightlike. 

If the separation between two spacetime events is spacelike, then any one of the events cannot 

affect the other event. In particular, it is impossible for any one of the events to be the cause of 

the other. 

The hypercone 

     
2(  )2  (  )2  (  )2  (  )2     

where        ,        , and so on, centred about the event  ⃗  (             ) is called 

the light cone, or the null cone, at  ⃗. Its interior contains of all timelike separations starting at  ⃗, 

its surface consists of all lightlike separations starting at  ⃗, and its exterior consists of all space-

like separations starting at  ⃗. We will now divide each of these three classes into two subclasses. 

Let   ⃗⃗ ⃗⃗ ⃗ be a separation, and let  ⃗  (       ) be the direction of time, which is a four-vector 

(check that). Then:  

 Iff ⟨  ⃗⃗ ⃗⃗ ⃗  ⃗⟩   , then   ⃗⃗ ⃗⃗ ⃗ is ‘future-pointing’. 

 Iff ⟨  ⃗⃗ ⃗⃗ ⃗  ⃗⟩   , then   ⃗⃗ ⃗⃗ ⃗ is ‘past-pointing’. 

Notice that the projection ⟨  ⃗⃗ ⃗⃗ ⃗  ⃗⟩ is simply the first (time) component of (  )⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗, just as if ⟨   ⟩ has 

been the standard inner product on   . 

Human beings generally find it difficult to visualise subsets of   . Therefore, in order to ‘visual-

ise’ the light cone, we will ‘suppress’ one of the three spatial dimensions; that is, we will pretend 
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that space is two-dimensional instead of three-dimensional. Then spacetime,      2     

becomes three-dimensional, and the hypercone reduces to a 2-cone 

  
2(  )2  (  )2  (  )2  

Since, from a qualitative point of view, the Euclidean plane and three-space are very similar in 

nature, this is actually a very fruitful technique of visualisation. Choose therefore any point  ⃗ in 

spacetime, such as the event that represent you right now. Below is the light cone at  ⃗ with one 

spatial dimension suppressed. For simplicity, we have set      (alternatively, you can consider 

the vertical axis as being scaled). 

 

Figure 32. The light cone. 

The vertical axis, corresponding to the red basis vector, is the time axis. That is, any ‘slice’ 

        of spacetime, corresponding to a fixed time, is really the three-dimensional space at 

that time (that is, a hyperplane (and, of course, a hypersurface) in spacetime), but since we have 

suppressed one spatial dimension, it appears like a two-dimensional plane in the diagram above. 
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In particular, the slice      is space at the current time of the event, indicated by the green 

plane in the diagram. The two green basis vectors are spatial basis vectors. 

The upper ‘half’ of the cone is the future light cone, consisting of all events that a photon emitted 

at the vertex of the cone (that is, at the event   ⃗⃗⃗⃗⃗). The intersection of the future light cone with 

any spatial slice          is a circle in the diagram above, but a sphere in reality. It is simply    

that we met before. The interior of the future light cone is called the future of   ⃗⃗⃗⃗⃗. The future con-

sists of all points in spacetime that an observer located at   ⃗⃗⃗⃗⃗ has a chance to visit. The union of 

the future light cone and the future of   ⃗⃗⃗⃗⃗ is the set of spacetime events that could possible by 

affected by the event   ⃗⃗⃗⃗⃗. Similarly, we define the past light cone as the lower ‘half’ of the light 

cone. This is the set of events ℰ such that a photon emitted at ℰ has a chance to reach   ⃗⃗⃗⃗⃗ (if emit-

ted in the right spatial direction). The interior of the past light cone is called the past of   ⃗⃗⃗⃗⃗ and 

consists of all in spacetime in which an observer at   ⃗⃗⃗⃗⃗ might have been at. The union of the past 

light cone and the past of   ⃗⃗⃗⃗⃗ is the set of spacetime events that could possibly affect   ⃗⃗⃗⃗⃗. The com-

plement of {  ⃗⃗⃗⃗⃗}                  ⃗⃗⃗⃗⃗               ⃗⃗⃗⃗⃗            ⃗⃗⃗⃗⃗ is called elsewhere. Elsewhere 

(which we will always italicise, due to risk of confusion with the adverb) consists of all 

spacetime events that can have no causal relationship with   ⃗⃗⃗⃗⃗ whatsoever. This means that 

 no event in elsewhere can affect   ⃗⃗⃗⃗⃗ and 

   ⃗⃗⃗⃗⃗ cannot affect any event in elsewhere. 

If you think you have found a misprint in the paragraphs above, this is most likely due to a mis-

understanding of the word ‘event’. Since this is a rather common and easy-to-make mistake, we 

rephrase that 

 An event is a specification of a point in space AND a particular time. 

Say that you are located at   ⃗⃗⃗⃗⃗ and consider a different event  ⃗ occurring at the same time (rela-

tive to your frame of reference) but a few meters (or even miles) away. Thus, if we draw the light 

cone at   ⃗⃗⃗⃗⃗, then  ⃗ might be the event indicated with a red dot in the diagram below: 

 

Figure 33. A light cone and an event in the hypersurface of ‘the present’. 
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 ⃗ clearly belongs to elsewhere, and, indeed, the spacetime separation between   ⃗⃗⃗⃗⃗ and  ⃗ is space-

like, since      and (  )2 + (  )2 + (  )2   . Thus, the event  ⃗ can have no influence on   ⃗⃗⃗⃗⃗ 

whatsoever. But this does not mean that the happening at  ⃗ can never affect you personally, it 

simply means that it cannot affect you at   ⃗⃗⃗⃗⃗, that is, at time     . Indeed, a gas (nuclear) explo-

sion happening in your kitchen (a town some hundred miles away) will not affect you, in your 

study, until several microseconds (seconds) later. That event, that is, you at that later time, is a 

different spacetime event (even if it is at the same point in space). And this spacetime event 

(which by the way is found in the future of   ⃗⃗⃗⃗⃗, indeed, just ‘above’   ⃗⃗⃗⃗⃗ in the diagram) is a member 

of the future of  ⃗, the light cone of which is different from the light cone of   ⃗⃗⃗⃗⃗. 

3.6.6.1 Transformation Properties of the Light Cone 

Spacetime   is a geometric object, independent of any coordinate system, and so is a point, or 

event,  ⃗ in it (even though, of course, its coordinates depends upon the observer’s coordinate 

system). We have introduced the light cone at  ⃗, which is a hypersurface of  . The question aris-

es, “does the light cone at  ⃗ depend upon the observer?” In other words, given a geometric point 

in spacetime (an event), does all possible observers agree upon the light cone at the event? In 

still other words, is ‘the light cone at  ⃗’ well-defined as a geometric entity?  

What do we need to show? We need to show that if some (inertial) observer considers an event 

 ⃗ as a part of the light cone at   ⃗⃗⃗⃗⃗, then any other (inertial) observer should agree. (The converse 

should also be true.) We will now show that it is. 

Proof45 

To this end, consider some inertial frame ℱ1 of reference, with a Minkowski coordinate system. 

We are interested in the light cone at   ⃗⃗⃗⃗⃗   . Introduce some other Minkowski frame ℱ2 in 

standard configuration relative to ℱ1. Let   
 ⃗⃗⃗⃗⃗      be the same geometric point as   , but ex-

pressed in ℱ2 coordinates. We will consider an arbitrary event in spacetime, known as  ⃗ and   ⃗⃗⃗⃗  

relative to ℱ1 and ℱ2, respectively. Let the separation four-vectors be   ⃗⃗ ⃗⃗ ⃗ and    ⃗⃗ ⃗⃗ ⃗⃗ ⃗, so that 

  ⃗⃗⃗⃗⃗ +   ⃗⃗ ⃗⃗ ⃗   ⃗       

  
 ⃗⃗⃗⃗⃗ +    ⃗⃗ ⃗⃗ ⃗⃗ ⃗    ⃗⃗⃗⃗   

Then it is clear, by the definition of the light cone inside each frame, that 

           ⃗                                ⃗⃗⃗⃗⃗             ℱ  ‖  ⃗⃗ ⃗⃗ ⃗‖          

            ⃗⃗⃗⃗                                 
 ⃗⃗⃗⃗⃗             ℱ  ‖   ⃗⃗ ⃗⃗ ⃗⃗ ⃗‖     

But   ⃗⃗ ⃗⃗ ⃗ is a four-vector, and so its norm is a Lorentz scalar. Thus 

‖  ⃗⃗ ⃗⃗ ⃗‖    ‖   ⃗⃗ ⃗⃗ ⃗⃗ ⃗‖    

which trivially implies 

           ⃗                                ⃗⃗⃗⃗⃗             ℱ  

              ⃗⃗⃗⃗                                 
 ⃗⃗⃗⃗⃗             ℱ  

and we are done. ∎ 

                                                             
45 You could argue that this proof is overly long, but I want it to be both easy-to-read and rigorous. 
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4 Classical Differential Geometry 

 

 

 

 

 

 

 

Figure 34. The Möbius band is a surface with only one side. In 
this chapter, we will explore curves and surfaces in ordinary 
space in order to prepare ourselves for a more general theo-
ry of ‘manifolds’ that is to come in the next chapter. 



 Physics Done Right, an Attempt 

 170/314 

4.1 Introduction 

This rather short chapter will be purely mathematical. It is included because the general theory 

of relativity, which we will turn to in the last chapters of the book, is formulated in the language 

of differential geometry. Indeed, we will find that spacetime curves in the presence of gravity, 

and that the curvature and metric properties of spacetime can be described in much the same 

language used to discuss the curvature of surfaces embedded in ordinary Euclidean space, which 

is far easier to understand. 

In this chapter, we need the standard concepts 

Definition NN 

Let      and     . 

A continuous bijection        with a continuous inverse is called a homeomorphism. If such a 

function exists between   and  , then   and   are said to be homeomorphic. A differentiable 

bijection        with a differentiable inverse is called a diffeomorphism. If such a function ex-

ists,   and   are said to be diffeomorphic. If   is a diffeomorphism and both   and     are 

smooth, then   is a smooth diffeomorphism. 

and 

Definition NN 

Let 

     {     | |   } 

be the (   )-dimensional unit sphere in   . 

In particular, 

   {(   )   2   2 +  2   } 

is the unit circle and 

 2  {(     )      2 +  2 +  2   } 

is the unit sphere. 

We also make 

Definition NN 

Let 

   {     | |   } 

be the  -dimensional (open) unit ball. 

Thus,    is the usual, three-dimensional, open unit ball,  2 is the open unit disk, and 

   ]    [. 
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4.2 Curves 

Although we are mainly interested in surfaces, we will start by considering curves.  

4.2.1 What is a Curve? 

It is difficult to give a precise definition of a ‘curve’ in a way that pleases everyone. In fact, it is 

hard to give a definition that entirely pleases the current author alone. The problem is that the 

word ‘curve’ is used in so many different, although related, ways, all of which seem highly natu-

ral. From a geometrical point of view, a curve is something you can draw with a pen on a paper. 

More precisely, it is the image  ( ) of a continuous function      2 where   is an interval, 

probably, but not necessarily, bounded. Such a curve is thus a set of points  ( )   2. (For defini-

tiveness, in this introductory subsection, we will only consider curves in the plane. The generali-

sation to curves in    causes almost no problems.) 

From a physical point of view, we might want to consider the function   itself as the ‘curve’. In-

deed,  ( ) might be the position of a particle at time    . This is a different concept. In particu-

lar, there are generally many different functions      2,      2, … with the same image 

 ( )   ( )   . This can cause some trouble with the terminology if one is not careful. Say, for 

instance, that a particle moves two laps about the unit circle with unit speed starting at the 

origin of time, that is, its position is  ( )  (         ) where   [    ]. If you consider the 

curve to be the function, then the length of the curve is   . But the length of the ‘point-set curve‘ 

 ([    ]) is clearly only   , the same as the length of the ‘curve’  ( )  (         ) where 

  [    ]. In addition, a curve, as a function, contains information about the speed of the particle 

at each point and the orientation of the curve. This information is not present in the image of the 

curve (the point set). Indeed, if  ( )  (         ),     [    ] and  ( )  (           ), 

    [   ] then  ( )   ( ) although |  ( )|    while |  ( )|   . 

Irrespective if one considers a curve to be a function   on an interval   or the image  ( ), one 

might want to require   to be either open or closed. If we demand that   is open, we can simplify 

many arguments and proofs since every point     looks like every other point; in other words, 

  does not contain any boundary points that might require special treatment. On the other hand, 

if we demand that   is closed, then we obtain many niceties if   is also bounded. Then   [   ] 

and both  ( ) and  ( )   ( ). Still, if we would require   to be either open or closed, a lot of 

functions/point sets that certainly looks like curves would not qualify for the term. 

A curve, considered as a point set that you can draw by a pen on a paper, is said to be closed if it 

‘starts and ends at the same point’. This can be made precise, for instance, by saying that the 

curve is the image of a function   [   ]   2 such that  ( )   ( ). A curve is said to be simple 

if it does not intersect itself, that is, if   is injective except for the possibility  ( )   ( ) if the 

curve is closed. 

One might want to restrict the term ‘curve’ to mean only simple curves. This has a number of 

major advantages. For one thing, it would make the concepts of length of a function      2 

and the length of a point set  ( ) coincide (at the very least if you disregard pathological exam-

ples). Indeed, now  ( )  (         )   [    ] is no longer a ‘curve’. In addition, we will later 

introduce the concept of curvature, which measure the amount by which a ‘curve curves’ at 

some point    . Intuitively, we wish the curvature to be a function     ( )   . Indeed, if two 

curves      2 and      2 has the same image  ( )   ( ), then the ‘curvature’ should be 

the same at each point on  ( ) no matter if we use   or   to compute it. However, naturally, we 

do need to compute the curvature using some parameterisation function  , and, unfortunately, it 
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is easy to see that, although we can define a curvature function         easily, in general, it is 

impossible to define a curvature function     ( )   . The problem is that   might not be injec-

tive. There might be parameters      ,    , such that the curvatures  ( )   ( ) while 

 ( )   ( ), as illustrated below. 

 

Figure 35. A non-simple curve with ambiguous curvature at the intersection. 

This problem is obviously removed if we demand that the curve is simple, that is, if we demand 

that      2 is an injection. Then   is a bijection from   to its image  ( ), and so    ( )     is 

certainly well-defined. Another nicety of simple curves is that every simple curve  ( ) can be 

made into a totally ordered set by defining        ( )     ( ) where       ( )      

is the inverse of      ( ) which exists since   is injective. Finally, a simple curve has the nice 

property that is has no intersections. Although obvious, this is an important property in its own 

right when a curve is considered a ‘manifold’ (a concept we will define in later sections). 

Unfortunately, we simply ‘cannot’ restrict our attention to simple curves, since we are interested 

in physics. Indeed, if      2 is the position function of a particle, then, of course, we must ac-

cept the possibility that   is not injective. In addition, even from a purely geometric point of 

view, it is natural to think of non-simple curves as being ‘curves’. 

With the above discussion in mind, it should be clear that we need to make some compromises 

when we define the ‘curve’. We will use the word ‘f-curve’ (‘f’ as in ‘function’) to denote a func-

tion      , and the word ‘curve’ to denote the image of such a function. We will make no re-

quirements on the interval  , and we will allow non-simple curves. In most cases, problems that 

arise due to non-injective f-curves can be removed by splitting the interval   into several smaller 

intervals, such that the function is injective on each interval. That’s important to keep in mind. 

Definition NN 

A curve parameterisation function, or an f-curve for short, is a continuous function        

where     is an interval of non-finite cardinality. The image    ( )     is called a (para-

metric) curve. 

If   is an interval, let    denote the set of boundary points of   [thus, | |  {     }]. Then let 

 ̅       be the closure of   [thus   ̅ is a closed set], and    ( )       the interior of   [thus 

   ( ) is an open set]. 

If     (or    ) we speak of a plane curve (or a space curve). 

 

High or low curvature? 
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4.2.2 Examples of Curves 

Example NN 

The circular (cylindrical) helix of radius     and pitch       is the image    ( ) of 

 ( )   (
     
     
  

)       

Obviously, the projection of the helix onto the   -plane is a circle of radius  . Fix any point     

on the helix and consider the smallest number     such that  +   ̂   . Clearly, the   and   

coordinates of   and  +   ̂ are both the same, and so   must be increased by   . Thus, the verti-

cal distance between the points is       , that is, the pitch. Hence, the pitch is the vertical dis-

tance between successive points on the helix above the same point on the projection circle. 

Below is a circular helix with parameters     and     ⁄ . 
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Example NN 

The circular conical helix is the image    ( ) of 

 ( )   (
      
      
  

)      

(       ). Below it is drawn for        ⁄ . 

 

 

Example NN 

A (straight) line passing through a point      with non-zero directional vector      is the 

image of 
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 ( )   +         

Many important curves are plane curves. 

Example NN 

Let       be a function on    . Then, by definition, its graph is 

{(   )   2 (    )  (   ( ))}  

If   is continuous and    is an interval, then the graph is the parametric curve  (  ) where 

 ( )   (
 
 ( ))        

 

Example NN 

A circle of radius   is the set of points (   )   2 satisfying  2 +  2   2. This is a closed curve 

given by 

 ( )   (
     
     

)    [    ]  

An ellipse with semi axes lengths   and   is the set of points satisfying (
 

 
)
2
+ (

 

 
)
2
  . This is a 

closed curve given by 

 ( )   (
     
     

)    [    ]  

 

Example NN 

The Archimedean spiral is the set of points satisfying the polar equation 

   +           

The logarithmic spiral has the polar equation 

              

Both of these are parametric curves given by 

 ( )   (
 ( )     
 ( )     

) 

where     and  ( )   +    in the first case, and     and  ( )       in the latter case. 

Below is the Archimedean spiral and the logarithmic spiral drawn for (   )  (  
 

 
)    [    ] 

and     
 

  
   ]      ], respectively. 
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Example NN 

The butterfly curve is the set of points described by the polar equation 

 ( )              +     
    

  
   [     ]  

This is indeed a parameterised curve, given by 

 ( )   (
 ( )     
 ( )     

)    [     ] 

(say) where 

 ( )              +     
    

  
  

The butterfly curve is not a simple curve, as is obvious from the plot below. 
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We have seen examples of both plane curves and space curves. At this time, it is appropriate to 

make 

Definition NN 

Let      be a space curve. If there exists a plane      such that      , then   is planar. 

Let    2 be any plane graph. Then   { }     is a planar space curve for every    . More 

generally, let   be any non-singular linear transformation      , and   any spatial translation 

   +   (     constant). Then  ( (  { })) is a planar space curve. 

4.2.3 Some Technical Notes on Parameterisation 

In order to distinguish ‘nice’ f-curves and curves from ‘pathological’ ones, we make 

Definition NN 

An f-curve        is regular iff it is smooth and   ( )    for every    . A curve is smooth (or 

regular) iff it is the image of some smooth (or regular) f-curve. 

 

An f-curve   might be thought of giving the position of a particle at a given time. Hence, the de-

rivative   ( ) might be thought of as the velocity at  . In particular, the magnitude |  ( )| can be 

thought of as the speed at  . This motivates 

Definition NN 

An f-curve         is unit-speed if | ( )|    for all    . 

It is obvious that a given curve   in general may be the image of many different f-curves. The unit 

circle, for instance, is the image of infinitely many f-curves. Some traverse the circle once, and 

some traverse it several times. In addition, different f-curves may have different speeds and ori-

entations. For instance, the f-curve 

 ( )   (
    
    

)      [   ] 

has the same image as the f-curve 

 ( )   (
     
     

)      [  
 

 
]  

namely, the upper-half unit circle. Notice that   is unit-speed, while   is not. Notice also that 

there exists an increasing smooth diffeomorphism       such that  ( )   ( ( )) for all    . 

Indeed,  ( )  
 

2
 . Thus,   can be used to translate the ‘ -coordinate’ of a point on  ( )   ( ) to 

the corresponding ‘ -coordinate’. In addition,     exists and  ( )   (   ( )) for all    : 

   ( )     and translates ‘ -coordinates’ to ‘ -coordinates’. This motivates 

Definition NN 

Let        be an f-curve. An f-curve        is called a reparameterisation of   iff there ex-

ists an increasing smooth diffeomorphism       such that  ( )   ( ( )) for all    .   is 

called the reparameterisation map from   to  . 
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Lemma NN 

Let        be an f-curve and let        be a reparameterisation of   with reparameterisa-

tion map  . Then 

(1)   ( )    for every    . 

(2)   is a reparameterisation of   with reparameterisation map    , 

(3) if   is regular then   is regular,  

(4)  ( )   ( ), 

(5) |  ( )|  |  ( ( )|    ( ), and 

Proof 

(1) Since   is a diffeomorphism, (   ) ( ( ))     ( )⁄  exists for every    . Thus 

  ( )    everywhere. 

(2) Since   is a smooth diffeomorphism, its inverse     exists and is a smooth dif-

feomorphism, too, and        . In addition, pick any     and let     ( )   . Then 

the defining equation  ( )   ( ( )) implies  (   (  ))   (  ), and, since  ( )   , 

this holds for every     . 

(3) Assume   is regular. Then the defining equation  ( )   (   ( )) gives  ( ) as the 

composition of two smooth functions          and        . Thus        is 

smooth. In addition, for every    ,   ( )    (   ( ))  (   ) ( ) where   (   ( ))  

  because   is regular, and (   ) ( )    according to (1) and (2). Thus   is smooth and 

  ( )    and so, by definition,   is regular. 

(4) The defining equation  ( )   ( ( )) yields  ( )   ( ) since    ( ). 

(5) This follows immediately from the defining equation and the chain rule.  ∎ 

It should be clear that   and  , if they are reparameterisations of each other, have very similar 

properties. Not ‘only’ do they have the same image, as the following example shows. 

Example NN 

It is not true that every pair of f-curves with the same image are reparameterisations of each 

other. For instance,  ( )  (         )     [    ] and  ( )  (         )     [    ] 

clearly have the same image  ( )   ( )    , but there does not exists a bijection       such 

that  ( )   ( ( )) for all    . Indeed, if there is a function       such that ( )   ( ( )) 

for all    , then, since  ( )   (  )  (    ), we must have  ( )   (  )    because only 

  gets mapped to (    ) by  . But then   is not injective. 

One might say that a reparameterisation   of an f-curve   preserves all physical properties of the 

trajectory   except for its speed at ‘corresponding’ points, which is altered according to Lemma 

NN(5). In particular, if   traverses the unit circle   times, then so does  . 
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Lemma NN 

Let        and        be two injective regular curves with the same image    ( )   ( ), 

which is a simple regular curve. Assuming that   and   are smooth diffeomorphisms to  , there 

exists a reparameterisation map       from   to  . 

Proof 

Since   is a smooth diffeomorphism, its inverse         exists and is smooth, and the same 

applies for the inverse         of  . Define  ( )     ( ( )) for all    ; then  ( )    and 

since both   and     are smooth diffeomorphisms, so is  . In addition, application of   yields 

 ( ( ))   ( ) which is the defining equation of a reparameterisation map. ∎ 

4.2.4 The Length of an f-Curve 

We make the obvious 

Definition NN 

The length of a regular f-curve        is 

  ∫|  ( )|  
 

  

The signed length of the part of the curve from     to     (where       ̅or possibly   ) is 

  ∫ |  ( )|  
 

 

  

Notice that, by definition, the length is a property of an f-curve, not of a curve. Thus, the f-curve 

 ( )  (         )     [    ] has length   , although the curve  ( )     has length   . 

Even though it is essentially apparent from the geometrical ideas that lead to Definition NN 

(which the reader is supposed to know very well), we might want to check some fundamental 

niceties: 

Corollary NN 

Let        be a regular f-curve and        a reparameterisation of  . Then 

∫|  ( )|  
 

 ∫|  ( )|  
 

  

Proof 

By Lemma NN, 

∫|  ( )|  
 

 ∫|  ( ( ))|    ( )  
 

 [
    ( )

      ( )  
]  ∫|  (  )|   

 

  

∎ 

Slightly more generally, we have 



 Physics Done Right, an Attempt 

 180/314 

Corollary NN 

Let        and        be two injective regular f-curves with the same image    ( )  

 ( ). Assuming that   and   are smooth diffeomorphisms to  , the length of   is the same as the 

length of  , that is, the length of a simple regular curve   does not depend on its (smooth) pa-

rameterisation. 

Proof 

According to Proposition NN, there exists a reparameterisation map       from   to  . Thus, 

using Corollary NN, the lengths of   and   coinside. ∎ 

If a curve is not simple, but intersects in a finite number of points (such as the butterfly curve 

shown above), the length is still independent of parameterisation, which you can show by parti-

tioning   into smaller intervals such that the f-curve is injective in each interval. We will not go 

into the details. 

Example NN 

Consider the (circular elliptical) helix   from Example NN: 

 ( )   (
     
     
  

)       

The restriction of   to ]     +   [ is an f-curve, the image of which is a single ‘turn’ of the helix 

 . Since 

  ( )   (
      
     
 

)  |  ( )|  √ 2 +  2 

the length of such a ‘turn’ is 

∫ √ 2 +  2  
   2 

  

   √ 2 +  2  

 

Example NN 

We want to find the lengths of the spirals drawn in Example NN. The Archimedean spiral is pa-

rameterised by 

 ( )  
 

 
 (
     
     

)    [    ] 

Thus 

  ( )  
 

 
 (
          
    +      

)  |  ( )|  
 

 
√ +  2 

so that the length 
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∫ √ +  2  
  

 

       

The logarithmic spiral is parameterised by 

 ( )  
 

  
 ( 

   ⁄     
    ⁄     

)    ]      ] 

and so 

  ( )  
 

  
    ⁄  (

 

  
         

 

  
    +     

)  |  ( )|  
 

  
    ⁄ √

   

   
 

and 

  
√   

   
∫     ⁄   
 2 

  

       

Consider a regular f-curve       . Fix any      and consider the signed distance  ( ) from 

     ̅ to    .̅ Intuitively,   assigned a unique number to each point on    ( ), namely, the 

signed distance from  (  ) along the curve, and so can be used as a parameter, called an arc-

length parameter. Quantitatively, 

 ( )  ∫ |  (  )|   
 

  

 

so that 

  

  
 |  ( )|         

because   is regular. Hence   is a strictly increasing function and a diffeomorphism      ( ) 

where   is also an interval. Thus,     is a reparameterisation map, and   is a valid parameter. 

The arc-length parameter is not unique, however. If   and    are two arc-length parameters, then 

    +   for some constant  . Indeed, if   measures arc length from    and    measures arc 

length from   
 , then 

 ( )    ( )  ∫ |  (  )|   
 

  

 ∫ |  (  )|   
 

  
 

 ∫ |  (  )|   
  
 

  

        

Definition NN 

Let   be a curve given by a regular       . Choose any      and introduce the arc-length 

parameter 

 ( )  ∫ |  (  )|   
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that measures the signed arc length from   . Then any parameter     +  , where     is ar-

bitrary, is also called an arc-length parameter. 

We state now the important relation between the arc-length parameter and the unit-speed pa-

rameterisation: 

Proposition NN 

Let        be a regular f-curve. Then   is unit-speed if and only if the parameter is an arc-

length parameter. 

Proof 

Suppose that the parameterisation is unit-speed. Then the arc-length from      to     is 

 ( )  ∫ |  (  )|   
 

  

 ∫    
 

  

       

that is,   is an arc-length parameter. Conversely, if   is an arc-length parameter, then the signed 

distance from      to     is 

∫ |  (  )|   
 

  

  +   

for some constant  . Differentiation with respect to   yields 

|  ( )|    

and so   is unit-speed. ∎ 

Since every regular function has an arc-length parameter, we have 

Corollary NN 

Every regular curve has a unit-speed reparameterisation function. 

In what follows, we will need 

Lemma NN 

Let   be the image of a regular, unit-speed parameterisation function       . Then 

  ( )     ( )       

Proof 

By hypothesis, 

(  ( ))
2
    

Differentiation w.r.t.   yields 

  ( )     ( )     

∎ 
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4.2.5 Curvature 

We wish to introduce a quantity that measures how much an f-curve        ‘curves’, that is, 

how much it deviates from a straight line. Intuitively, we wish this quantity to be a non-negative 

number defined at every    , and a line should have zero curvature everywhere, while a circle 

of radius   should have the same curvature at every point, and this should be a decreasing func-

tion of  . Essentially, we would like the curvature to be a function on the curve, that is, on the set 

 ( ). However, if the curve is not simple, that is, if   is not injective, and this might be a slight 

problem as discussed in the introduction of this section. Nevertheless, we require that the curva-

ture be independent on parameterisation as far as possible. For instance, in a simple curve, the 

curvature should be a function defined on the curve, irrespective of parameterisation. 

A natural approach would be to use the magnitude of the second derivative of the parameterisa-

tion function. However, such a concept would not be suitable at all: it would not only depend on 

the curve  , but also on the parameterisation function  , even if we only take simple curves and 

injective functions into account. For example, the circle parameterisations (         )   

[    ] and (           )   [   ] would yield two different curvatures. If we demand that the 

parameterisation be unit-speed, however, then it will work. 

Definition NN 

Let        be a unit-speed regular f-curve. Then the curvature of   at     is 

  |   ( )|  

Let        be any regular f-curve with a unit-speed reparameterisation        and repa-

rameterisation map      . Then the curvature of   at     is defined as the curvature of   at 

 ( )   . 

We need to check that the latter concept is well-defined, that is, that the curvature of   does not 

depend upon which unit-speed reparameterisation function   you choose to use for the curva-

ture computation. 

Proposition NN 

Let        be a regular f-curve with two unit-speed reparameterisation functions        

and        with corresponding reparameterisation maps       and      . Then 

|   ( ( ))|  |   ( ( ))|       

Proof 

We have 

 ( )   ( ( ))   ( ( ))  

but since both  ( ) and  ( ) are arc-length parameters, 

 ( )   ( ) +   

for some    . Thus 

 ( ( ))   ( ( ) +  )  

Differentiation with respect to   yields 
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  ( ( ))  ( )    ( ( ) +  )  ( ) 

and, since   ( )   , 

  ( ( ))    ( ( ) +  )  

Differentiating again, 

   ( ( ))    ( )     ( ( ) +  )    ( ) 

and 

   ( ( ))     ( ( ) +  )     ( ( ))  

Thus 

|   ( ( ))|  |   ( ( ))|  

∎ 

Example NN 

Let   be a straight line given by 

 ( )   +        

where        | |   . Then |  ( )|  | |    so that   is unit-speed. Since      , the curva-

ture 

  |   ( )|          

 

Example NN 

Let   be a part of a circle of radius  , given by 

 ( )   (
    (  ⁄ )

    (  ⁄ )
)       

Since 

  ( )   (
    (  ⁄ )

   (  ⁄ )
)  |  ( )|     

  is unit-speed. Furthermore, 

   ( )  
 

 
 (
    (  ⁄ )

    (  ⁄ )
) 

so that the curvature 

  |   ( )|  
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The above examples show that our definition satisfies our demands. Now we can obtain some 

more interesting results. 

Example NN 

The (circular cylindrical) helix from Example NN is given by 

 ( )   (
     
     
  

)       

This is not unit-speed, since 

|  ( )|  √ 2 +  2                   

We thus need to ‘slow it down’ a bit. It is clear that 

 ( )   (
    (  ⁄ )

    (  ⁄ )

 (  ⁄ )
)       

where   √ 2 +  2, is a unit-speed parameterisation for  . Indeed, 

  ( )  
 

 
 (
     (  ⁄ )

    (  ⁄ )
 

)  |  ( )|  
 

 
      

Furthermore, 

   ( )  
 

 2
 (
     (  ⁄ )

     (  ⁄ )
 

) 

and so the curvature 

  |   ( )|  
 

 2
 

 

 2 +  2
  

As      while   is constant,    , as one would expect, since the curve is ‘straightened’ like a 

stubborn cable. Also notice that     ⁄  as    , also as one would expect, because in this case 

the helix tends to a circle of radius  . 

Notice that all examples so far have involved curves of constant curvature. We will investigate 

more complicated curves after we have found a simpler method of determining the curvature. 

After all, it is rather cumbersome to determine a unit-speed parameterisation every time. 

Proposition NN 

Let        be any regular f-curve (unit-speed or not!). Then 

  
| ̇   ̈|

| ̇| 
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where a dot denotes a derivative w.r.t. the parameter and the    -dependance is understood. 

Proof 

Let    ( ) be a unit-speed reparameterisation of the given f-curve    ( ). Then 

 ( ( ))   ( )  

Differentiation w.r.t.   yields 

  

  
 
  

  
 
  

  
 

and 

 2 

  2
 (
  

  
)
2

+
  

  
 
 2 

  2
 
 2 

  2
  

Thus 

  

  
 
 2 

  2
 (
  

  
 
  

  
)  (

 2 

  2
 (
  

  
)
2

+
  

  
 
 2 

  2
)  

  

  
 
  

  
 
 2 

  2
 (
  

  
)
2

 

and so 

|
  

  
 
 2 

  2
|  |

  

  
 (
  

  
)
2

|   

since   is unit-speed and by the definition   |
   

   
|  (↑) also yields 

|
  

  
|  |

  

  
|   

thus 

|
  
  
 
 2 
  2
|

|
  
  |

  

|
  
  
 (
  
  
)
2

|  

|
  
  |

     

∎ 

It might appears as if Proposition NN only holds for plane curves. However, since any plane 

curve can be trivially embedded in    by means of the linear transformation 

(
 
 )  (

  
  
  

)(
 
 )  (

 
 
 
)  

we can use Proposition NN even for planar curves. Now we can investigate some more compli-

cated curves with less effort. If we are interested in curves with non-constant curvature, it is 

natural to turn to the spirals of Example NN. 

Example NN 

We will compute the curvature of the Archimedean spiral, which is parameterised by 
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 ( )  
 

 
 (
     
     
 
)       

Thus 

  ( )  
 

 
 (
          
    +      

 
)     ( )  

 

 
 (
            
           

 
)  

  ( )     ( )  
 

  
 (

 
 

 +  2
)  |  ( )     ( )|  

 

  
( +  2)  

and 

|  ( )|  
 

 
√ +  2  

Therefore, 

  
| ̇   ̈|

| ̇| 
  

( +  2)

( +  2) 2⁄
  

It is easy to show that     ⁄        . Below is the graph of    ( ). 

 

The logarithmic spiral is left as an exercise. 

We end this subsection by investigating if there is a curve in which the curvature is proportional 

to arc length. (Intuitively, the existence part is rather obvious. But it is far from obvious if there 

is a reasonably simple parameterisation for it.) 

Let    ( ) where      2 is a unit-speed parameterisation. Our requirement is thus 

  |   ( )|          
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where    . Since   is unit-speed, |  ( )|        , and, since any vector of unit length may be 

written (         ) for some    , it is clear that there must exist a function    ( ) such 

that 

  ( )  (    ( )      ( ))  

Differentiation yields 

   ( )    ( )(     ( )      ( )) 

and so 

|   ( )|  |  ( )|      

If we require that     is an increasing function, 

  ( )     

which yields, if we require  ( )    [curve is horizontal at    ], 

 ( )  
 

 
  2  

Thus, 

  ( )  (   
 

 
  2     

 

 
  2) 

and so, if position our curve on the plane in such a way that  ( )   , 

 ( )  (√
 

 
 (√

 

 
 )  √

 

 
 (√

 

 
 )) 

where 

 ( )  ∫     2   
 

 

  ( )  ∫     2   
 

 

 

are the Fresnel integrals, which are well-known non-elementary functions. For the obvious rea-

son, the curve  ( ), which is called the Euler spiral (or Cornu spiral), is often used in railway con-

struction. Below the image  ( ) is shown (where   [        ]) for    . Although we initial-

ly required    ,  ( ) certainly makes sense for all    , and  (  )    ( )     . The defini-

tion equation (↑) still holds with a minor modification:   |   ( )|   | |    . 
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Figure 36. An Euler Spiral. 

4.2.6 Torsion 

It is intuitively clear, and one can rigorously show that, up to an isometry of the plane, the curva-

ture function     uniquely determines a plane curve. However, it is evident that the same does 

not apply for space curves. Indeed, a (circular cylindrical) helix with parameters       has 

the same curvature as a circle with radius    , namely,   ⁄ , and there is no isometry of space 

that can make a helix out of a circle or vice versa! In this section, we will introduce a new func-

tion of  , besides the curvature, namely, torsion. Together, the curvature and torsion uniquely 

determine a space curve up to an isometry of space. Essentially, we will see that the torsion 

measures the failure of a space curve to lie inside a single plane in space. First, we need some 

‘new’ concepts. 

Definition NN 

Let    ( ) be a space curve with   regular and unit-speed. Then, at    ,  ̂( )    ( ) is called 

the unit tangent (vector), and, assuming  ( )   ,  ̂( )  
 

 
   ( ) ( 

 

|   ( )|
   ( )), is called the 

unit normal (vector) to  . 



 Physics Done Right, an Attempt 

 190/314 

Recall from Lemma NN that  ̂( )   ̂( ) at every point     where the unit normal is defined. It 

should be clear that the unit tangent and normal vectors depend only on the curve   and its ori-

entation, and not on the parameterisation otherwise. 

Definition NN 

Let    ( ) be a space curve with   regular and unit-speed. Then, at every     where the unit 

normal  ̂( ) is defined, 

 ̂( )   ̂( )   ̂( ) 

is called the binormal to  . 

Since  ̂( ) and  ̂( ) are perpendicular unit vectors,  ̂( ) is too of unit length; HTH (hence the 

hat). 

Consider now a regular, unit-speed planar space curve    ( ) with unit tangent and normal 

vectors  ̂( ) and  ̂( ) at    , with   open, respectively, and let      be a plane such that 

     . Let     
  be a plane with the same normal direction as   but translated, if neces-

sary, as to contain the origin; notice that    is a vector space. Since   is open, there exists, for 

every     a sufficiently small     such that  +    , too. By definition, 

 ̂( )    ( )     
    

 ( +  )   ( )

 
  

Since both  ( +  )    and  ( )   , it follows that  ( +  )   ( )    . This being so for every 

positive   in some neighbourhood of  , it follows that the limit  ̂( )     as well. Hence, 

 ̂( )           

The unit normal, if defined, is 

 ̂( )  
 

 
 ̂ ( )  

 

 
   
    

 ̂( +  )   ̂( )

 
  

But    is a vector space, and so (↑) implies  ̂( +  )   ̂( )     for every     in a neighbour-

hood of 0; thus 

 ̂( )                   ̂( )              

Since  ̂( ) and  ̂( ) are perpendicular unit vectors in   , the binormal  ̂( )   ̂( )   ̂( )     

for all  . Thus, not only the (unit) length, but also the direction of   ̂( ) is constant. We summarise 

this as a proposition: 

Proposition NN 

Let    ( ) be a planar space curve (  regular and unit-speed) with binormal  ̂( ) at     

(where defined). Then 

( ̂)
 
( )         

(where defined). 
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It is therefore tempting to define the torsion as being closely related to the magnitude of the 

derivative of the binormal vector, and we will do so. Notice that 

 ̂   ̂   ̂  ( ̂)
 
 ( ̂)   ̂ +  ̂  ( ̂)   ̂  ( ̂)   

thus ( ̂)
 
  ̂. In addition, since | ̂|   , ( ̂)

 
  ̂. But since  ̂   ̂   ̂, we have ( ̂)

 
  ̂. 

Definition NN 

Let    ( ) be a space curve with   regular and unit-speed. Then the torsion τ at     is given 

by the relation 

( ̂)
 
    ̂ 

(where defined). 

The minus sign is a convention. Notice that  ̂ (and so  ̂) is only defined where    . This means 

that   is also only defined on (open) intervals where    . Notice also that    ( ̂)
 
  ̂ and 

| |  |( ̂)
 
|. 

Corollary NN 

A regular planar space curve has zero torsion everywhere it is defined. 

Naturally, we wish to compute the torsion of a curve, without all-embracing trouble. In other 

words, we need an analogue of Proposition NN, and here it comes: 

Proposition NN 

Let    ( ) be a space curve with   regular (but not necessarily unit-speed). Then 

  
( ̇   ̈)   ⃛

| ̇   ̈|2
 

where   is defined. 

Proof 

Following the proof of Proposition NN, we introduce the unit-speed reparameterisation function 

    and so, simply copying the results obtained there, 

 ( )   ( ( )) 
  

  
 
  

  
 
  

  
 

 2 

  2
 
 2 

  2
 (
  

  
)
2

+
  

  
 
 2 

  2
 

and 

  

  
 
 2 

  2
 
  

  
 
  

  
 
 2 

  2
 (
  

  
)
2

 |
  

  
 
 2 

  2
|  |

  

  
 (
  

  
)
2

|    

We now also need 

   

   
 
   

   
 (
  

  
)
 

+
 2 

  2
  (

  

  
)  
 2 

  2
+
 2 

  2
 
  

  
 
 2 

  2
+
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Putting it all together, 

( ̇   ̈)   ⃛

| ̇   ̈|2
 

 

|
  
  
 (
  
  
)
2

|

2

 2

 (
  

  
 
  

  
 
 2 

  2
 (
  

  
)
2

)  

 (
   

   
 (
  

  
)
 

+
 2 

  2
  (

  

  
)  
 2 

  2
+
 2 

  2
 
  

  
 
 2 

  2
+
  

  
 
   

   
)  

 
 

(
  
  
)
 

 2
 (
  

  
 
 2 

  2
)  (

   

   
(
  

  
)
 

+  
 2 

  2
  

  

 2 

  2
+
  

  

   

   
)  

 
 

(
  
  
)
 

 2
 ( ̂    ̂)  (

 

  
(  ̂) (

  

  
)
 

+    ̂
  

  

 2 

  2
+  ̂
   

   
)  

 
 

(
  
  
)
 

 2
 (  ̂)  (

 

  
(  ̂) (

  

  
)
 

+    ̂
  

  

 2 

  2
+  ̂
   

   
)  

 
 

(
  
  
)
 

 2
 (  ̂)  (

 

  
(  ̂) (

  

  
)
 

)  
 

 
 ̂  (

 

  
(  ̂))  

 

 
 ̂  (

  

  
 ̂ +  

  ̂

  
)  

  ̂  
  ̂

  
  

Since 

  
 

  
( )  

 

  
( ̂   ̂)  

  ̂

  
  ̂ +  ̂  

  ̂

  
   +  ̂  

  ̂

  
 

we have 

( ̇   ̈)   ⃛

| ̇   ̈|2
  ̂  

  ̂

  
   

as promised. ∎ 

Example NN 

Let us compute the torsion of the (circular cylindrical) helix, given by 

 ( )   (
     
     
  

)       

We find 

  ( )   (
      
     
 

)     ( )   (
      
      
 

)      ( )   (
     
      
 

)   

  ( )     ( )   (
      
       
 2

)  |  ( )     ( )|  √ 2 2 +     √ 2 +  2  

Thus 
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(  ( )     ( ))      ( )

|  ( )     ( )|2
 

 2 

 2( 2 +  2)
 

 

 2 +  2
  

Notice that     as    , which is to be expected, for in this limit, the helix becomes a planar 

circle. 

4.2.7 The Frenet—Serret Formulae 

The formulae relating the unit tangent, normal, and binormal vectors to the curvature and tor-

sion of a space curve are rather succinctly and neatly summarized in the three Frenet—Serret 

formulae, two of which we already know: 

  ̂

  
   ̂ 

  ̂

  
    ̂ 

where   is an arc-length parameter. The last Frenet—Serret formula follows from a simple calcu-

lation: 

 ̂   ̂   ̂   ̂   ̂   ̂  
  ̂

  
 
  ̂

  
  ̂ +  ̂  

  ̂

  
 (   ̂)   ̂ +  ̂  (  ̂)    ̂    ̂  

that is, 

  ̂

  
    ̂    ̂  

The beauty of the Frenet—Serret formulae lies in their matrix form: 

Proposition NN (The Frenet—Serret Theorem) 

Let a regular space curve   have unit tangent, normal, and binormal vectors  ̂,  ̂, and  ̂, respec-

tively, and let the curvature and torsion be   and  , respectively, and let   be an arc-length pa-

rameter, a derivative relative to which is denoted by a prime. Then 

(

( ̂) 

( ̂) 

( ̂)
 
)  (

   
    
    

)(
 ̂
 ̂
 ̂

)  

4.2.8 A Modern Definition of a Curve 

Our definition of a (parameterised) curve is a simple and highly intuitive one. However, it has 

some drawbacks. Perhaps most importantly, it will differ rather significantly from the definition 

of a surface that we will give in the next section. To remedy this, we give an alternative, and 

more ‘modern’, definition of a curve. 

Definition NN 

A subset      is called a (manifold) curve iff, for every point    , there exists an open set 

     containing   and an open set     such that     and   are homeomorphic. 

This definition is not equivalent to the definition of a (parameterised) curve given as Definition 

NN. Still, in many ways, it is a more ‘natural’ definition. It captures the essential property of a 

curve, namely, that a curve, locally ‘looks like’ a small, deformed part of an interval of  . In addi-

tion, it states that, locally, about every point, one can introduce a parameterisation of the curve, 
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and this is a very nice f-curve, indeed a homeomorphism. Also, one does not have to display an f-

curve, the image of which is  , in order to show that   is a (manifold) curve. It suffices to show 

that, locally, it can be parameterised by f-curves. 

One of the main drawbacks of this definition is that it does not allow non-simple curves. This is 

also the reason why we have used a different definition in this section. 
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4.3 Surfaces 

We now turn to two-dimensional surfaces embedded in   . As for the definition of ‘surface’, we 

could certainly mimic the definition of a curve made in the last section: 

Definition NN 

A (parameterised) surface in    is the image    ( ) of a surface parameterisation function (or 

an f-surface for short)         where   is injective and    2 is a simply connected set. 

A surface parameterisation function is regular iff it is smooth and |     |    at every point. A 

surface is regular iff it is the image of some regular surface parameterisation function. 

Notice that this definition disqualifies surfaces with self-intersections, but this is a rather small 

problem: while we are often interested in curves that intersect themselves, we rarely need to 

consider surfaces with this property. In addition, should such a need emerge, you are likely to 

overcome the problem by subdividing the parameter region   into smaller regions, such that the 

restrictions of the surface parameterisation function to these small regions are injective. 

Although this definition works perfectly for the vast majority of every-day situations, there are a 

few problems with it. One is that, in order to show that a subset of    is a surface, we need to 

display a parameterisation function. Thus, since we are not interested in self-intersecting sur-

faces anyway, there is really no reason not to go for the surface analogue of the ‘modern’ defini-

tion of a curve. 

Indeed, it is clear that if    2 is any point on the unit sphere, then there is an open set      

containing   and an open subset    2 such that    2 and   are homeomorphic, and this is 

typical for a nice surface in space. We will therefore make 

Definition NN 

A subset      is called a (manifold) surface iff, for every point    , there exists an open set 

     containing   and an open set    2 such that     and   are homeomorphic. 

A pair (   ) of a non-empty open subset    2 and a homeomorphism         for some 

open      is called a local coordinate system, or a (local coordinate) patch (or chart) of  . A 

collection of coordinate patches (     ) is called an atlas for   if ⋃ (  )   . 

It follows that every surface has an atlas, and if a subset      has an atlas, then it is a surface. 

In the following examples, we will mostly study surfaces with an atlas consisting of a single 

chart. Thus, in these simple cases any of the definitions would do. 

4.3.1 Examples of Surfaces 

Example NN 

The unit sphere  2 is a manifold surface. Indeed, consider the functions 

  (   )   (
        
        
    

)  (   )     ]   [  ]    [  
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 2(   )   (
        
        
    

)  (   )   2  ]   [  ]    [  

  (   )   (

 
 

√   2   2
)  (   )     {(   )   2  2 +  2  

 

  
}   

  (   )   (

 
 

 √   2   2
)  (   )     {(   )   

2  2 +  2  
 

  
}  

It is clear that every pair (     ) is a local coordinate patch, and that ⋃  (  )   
2. Thus the col-

lection (     ) of patches constitute an atlas for  2, which therefore is a manifold surface. 

 

Example NN 

A plane is the image of 

 (   )    +   +    (   )   2 

where     
  is some fixed point and   and   are two linearly independent vectors. 

 

Example NN 

A circular cylinder of radius    , given by the Cartesian equation  2 +  2   2, is the image of 

 (   )   (
     
     
 

)  (   )  [    [     

Although   does not qualify for a chart, it is clear that the circular cylinder is a surface. For in-

stance, an atlas is given by the two charts 

  (   )   (
     
     
 

)  (   )     ]    [     

 2(   )   (
     
     
 

)  (   )   2  ]    [     

 

Example NN 

The set of points that satisfy  2 +  2   2 is an example of a (circular) cone and is the image of 

 (   )   (
     
     
 

)  (   )  [    [     

The cone is not a manifold surface, because it does not ‘look like’ a Euclidean plane at the vertex 

(     ). However, the restriction     (or    ) is a manifold surface. 
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Example NN 

The helicoid is the image of 

 (   )   (
       
       
  

)  (   )    

for some       and some open    2. 

It is apparent from the parameterisation that a helicoid is the surface traced out by a rotating 

(straight-line) aircraft or boat ‘propeller’ as the vehicle is moving with constant velocity     ̂ 

in which case   is the time. Below a helicoid is drawn for (   )  (   ) and   ] 
 

2
 
 

2
[  

]      [. 
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Example NN 

Let       be a real valued function of two variables defined on    2. If   is continuous and 

  open, then the graph, defined by 

{(     )     ((   )   )  (   (   ))} 

is a surface, parameterised by the single patch 

 (   )   (

 
 

 (   )
)  (   )     

Below is the graph of the two-dimensional Gaussian  (   )     
 

 
(     ) on (   )  ]      [2. 
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4.3.2 The Tangent Space and the Standard Normal 

Consider a surface    ( ) with coordinates (   )   . At every point (   )   , mapped to 

   (   )   , the vectors   (   ) and   (   ) are tangent to the surface. The plane 

     {   
      (   ) +    (   ) +    (   ) (   )   

2} 

is called the tangent plane of   at  (   ). Although   (   ) and   (   ) depend upon the param-

eterisation function   of  , the tangent plane      does not. Notice also that       is a plane in 

space, because   (   ) and   (   ) are guaranteed to be non-parallel since   is regular. The tan-

gent plane      is not a vector subspace of    unless       . Since being a vector space is a 

formal nicety, we introduce the tangent space     as the tangent plane translated in    as to 

contain the origin. Thus, the tangent space     is a vector space, and a plane with the same nor-

mal direction as     . Of course, if you like, you can imagine     as being a vector subspace of a 

copy of    with origin at   relative to the ‘underlying’   , in which   lives. 

 

Figure 37. The tangent space at (   )  (
 

 
     

 

 
) to the sphere    ( ) of radius 5, which is considered a 

two-dimensional subspace of a copy of    with origin at  (
 

 
     

 

 
)   . 
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Needless to say, the tangent space is spanned by    and    and is always isomorphic to  2. Now, 

it is clear that, at every point,       is orthogonal to the tangent space, which we write either as 

          or as       (   )
  where (   )

  is the orthogonal complement of    , that is, 

    (   )
    . 

Of course, the geometric vector       at    (   ) depends not only upon    ( ), but also 

on the specific parameterisation  . However, the standard unit normal, defined as 

 ̂  
     
|     |

 

is almost independent upon the parameterisation; indeed, if  ̂ and  ̂ are the standard unit nor-

mal of two different f-surfaces   and    with the same image    ( )    ( ) then  ̂(   )  

  ̂ (     )  at every    (   )    (     ), which is obvious from the construction of the 

standard unit normal. (Since    and    are not parallel, the standard unit normal is well-defined.) 

The unit normal forms a vector field in    defined on  . For instance, the normal vector field to 

the sphere of radius five is (the usual parameterisation of which is regular everywhere besides 

at the poles   {   } ) is  ̂(   )  (                      ), and the normal vector field 

to the circular cylinder of radius five is (           ), as illustrated below. 

 

Figure 38. Unit normal fields to a sphere and a circular cylinder. 

“Clearly every regular surface has a globally defined smooth unit normal vector field”, a novice 

might say. “Clearly every regular surface has everywhere a locally defined unit normal vector 

field”, I would correct him. My proposition is rather immediate. Next we’ll see a counter-example 

to the novice’s proposition. 

Consider the Möbius band, which is the image of 

 (   )   

(

 
 
 
( +

 

 
    

 

 
)     

( +
 

 
    

 

 
)     

 

 
    

 

 )

 
 
 
 (   )    [    [  [    ]  
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You can create a Möbius band by taking a strip of paper (30 cm × 2 cm works just fine) and then 

attach its ends to each other, but, before doing so, you twist one of the ends 180°.  

 

Figure 39. A hand-made Möbius strip. 

Below the Möbius strip and its standard normal field  ̂ are drawn. 

 

Figure 40. The Möbius strip (or band) is a two-sided surface     . 
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4.3.3 The Area of a Surface 

Definition NN 

Let    ( ) be a regular surface given by a regular f-surface       . Then the area of   is 

∬  
 

 ∬|     |    
 

  

The motivation of this definition (as the reader is supposed to know very well) makes clear that 

the area defined this way coincides with the intuitive notion of the ‘area’ of a surface, and it is 

also clear that the area of a regular surface does not depend upon its parameterisation (recall 

that we do not allow non-injective parameterisation functions!). This can be shown by simple 

application of the ‘change of variables’ formula for multiple integrals, involving the functionals 

determinant (or Jacobian), you know. 

Example NN 

Let    ( ) be the (part of a) plane given by 

 (   )    (
 
 
 
) +   (

 
 
 
)  (   )  ]   [2  

Since 

    (
 
 
 
)      (

 
 
 
)         (

 
  
 
)  |     |  √  

the area of   is 

∬  
 

 ∬|     |    
 

 √ ∬    
 

   √   

 

Example NN 

We wish to compute the area of one full ‘lap’ of the helicoid from Example NN. Any such lap is 

clearly a translation and rotation of any other such lap, such as the surface    ( ) where 

 (   )   (
       
       
 

)  (   )    ] 
 

 
 
 

 
[  ]    [  

Now 

    (
     
     
 

)      (
       
      
 

)         (
     
      
  

)  

|     |  √ +    
2   √ +   2  

Thus the area 
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∬  
 

 ∬|     |    
 

  ∬√ +   2    
 

   ∫ √ +   2  
 2⁄

  2⁄

       

 

Example NN 

Let us compute the area of the Gaussian surface   plotted in Example NN. 

The parameterisation 

 (   )   (

 
 

   
 
 (
     )

)  (   )    ]      [2 

implies 

    (

 
 

 
  

 
  
 
 (
     )

)      (

 
 

 
  

 
  
 
 (
     )

)  

       (
(  ⁄ )    

 
 (
     )

(  ⁄ )    
 
 (
     )

 

)  

|     |  √
  

  
( 2 +  2)  

 
 
(     ) +   

and so the area 

∬  
 

 ∬|     |    
 

        

4.3.4 Curves on Surfaces: The First Fundamental Form 

We are interested in measuring the curvature of surfaces. Perhaps the easiest approach to a 

measure of the curvature of a surface is to study the curvature of space curves that are subsets 

of the surface. This is what we will do. For simplicity, from now on, we will assume that all f-

curves and f-surfaces are regular. 

Definition NN 

Let    ( ) be a surface given by       , and let    ( ) be a space curve given by 

      . If    , we say that   is a curve on   and that   is an f-curve on   and we may write 

     . 

The following result is immediate. 
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Observation NN 

Let    ( ) be a surface and let      2 be a plane f-curve with image    ( )   , which 

we write      . Then the space curve    ( ) given by        where  ( )   ( ( )) is a 

curve on  , that is,      . 

In other words, a curve in the parameter region   is mapped, by the f-surface, to a curve on the 

image of the f-surface. This is how we prefer to specify curves on surfaces. Indeed, to specify a 

point on the Earth’s surface, it is far more natural to specify the longitude and latitude (   )    

in the (very nice, indeed, rectangular) parameter region of the Earth, and not a point 

(     )   ( ) in the subset of the space in which the Earth is embedded. 

Every f-surface        has a natural family of curves on it, the so-called parameter curves. A 

parameter curve is the image of a straight line in the parameter region   that is parallel with one 

of the coordinate axes in  2   . That is, if (   ) are coordinates in  2   , then a general pa-

rameter curve can be written as  ( )  (   ) for   fixed or  ( )  (   ) for   fixed. A common 

way of drawing a surface    ( ) is to let     be a grid in   and plot  ( ), which then is the 

union of parameter curves of  . Indeed, this is how all surfaces have been drawn in the examples 

above. Below a parameter plane grid is mapped to a cylinder via  (   )   (           ). 

 

 

Figure 41. Parameter curves of a cylinder. 

Let us now turn to general curves on surfaces. As a simple example, consider the cylinder 

   ( ) given by 

 (   )    (
    
    
 
)  (   )    [    ]  [        ] 

and the butterfly curve   from Example NN but scaled by a factor     so that    . Then 

 ( )    is a curve on the cylinder, as illustrated below. 
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↓   

 

Figure 42. The butterfly curve on a cylinder. 
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4.3.4.1 Curve Lengths 

Let’s say that we have a surface    ( ) and a curve    ( ( )) on the surface, where       

is an f-curve on the parameter region  . We wish to find the length   of   (or, strictly speaking, 

the length of the f-curve         — they coincide unless the f-curve traverses some part of 

the curve many times). 

Let the f-surface be 

 (   )  ( (   )  (   )  (   )) 

and let the f-curve   be 

 ( )  ( ( )  ( ))  

Then, by definition, 

  ∫ |
 

  
 ( ( ))|   

 

 ∫|  ( ( ))    ( )|  
 

 ∫| (

    
    
    

)(
  
  
)|  

 

 

 ∫| (

    +     
    +     
    +     

)|  
 

 

 ∫√(    +     )
2 + (    +     )

2 + (    +     )
2  

 

 

 ∫√(  
2 +   

2 +   
2)  

2 +  (    +     +     )    + (  
2 +   

2 +   
2)  

2  
 

 

 ∫√|  |
2  
2 +  (     )    + |  |

2  
2  

 

 ∫√   
2 +       +    

2  
 

 

 ∫√( ̇) ℱ ̇  
 

 

where 

ℱ  (
  
  

)  (
|  |

2      
     |  |

2 ) 

is called the first fundamental form of the f-surface   and  ̇  
 

  
 .46. Notice that we may write, 

purely formally of course, 

                                                             

46 If   (    2     )   (

  
 2
 
  

) is a vector, then (

  
 2
 
  

) is the coordinate matrix of   relative to the basis  . 

Hence, if we wish to apply a linear transformation   to a vector, as to obtain a new vector, we should write 

    where we explicitly introduce   as the coordinate matrix of     . However, to simplify notation, 

we will use the same boldface letter to denote both the vector and its coordinate matrix. We let the situa-
tion make clear what we mean. For instance, we write simply    (since the product of a matrix and a vec-
tor is not defined, it is clear that   denotes the coordinate column matrix). Also, with    we mean the 
transpose of the coordinate matrix of  , that is, (   2    ) (indeed, the transpose of a vector is not 
defined). In particular, if      and   is a linear transformation, the we write      instead of     . 
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  ∫√   
2 +       +    

2  
 

 ∫√  (
  

  
)
2

+   
  

  

  

  
+  (

  

  
)
2

  
 

 

 ∫√    2 +        +     2
 

 ∫  
 

 

where   , of course, represents an infinitesimal arc-length (since, if you integrate it over the 

curve, you get the total length). Thus, we may write, formally, 

  2       2 +        +     2  (    ) (
  
  

) (
  
  
)  

We summarise: 

Definition NN 

Let        be an f-surface. Then the three functions 

  |  |
2  

         

  |  |
2 

(which are scalar fields on  ) are called the coefficients of the first fundamental form of  , and the 

matrix 

ℱ  (
  
  

) 

and also the formal expression 

  2       2 +        +     2 

is called the first fundamental form of  . 

 

Proposition NN 

Let    ( ) be a surface and    ( ( )) be a curve on  . Then the length of the (f-) curve is 

  ∫√( ̇) ℱ ̇  
 

  

4.3.4.2 Forms of some Common Surfaces 

We will determine the first fundamental forms for a few important f-surfaces. 

Example NN 

Consider a general plane 

 (   )    +   +     

We have 
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ℱ  (
  
  

)  (
| |2    

   | |2
)  

Notice that ℱ  is always constant, diagonal if    , and equal to the identity matrix if also   and 

  are unit vectors. Since every plane can be written on the form (↑) with orthogonal and unit   

and  , it follows that every plane can be parameterised by an f-plane with ℱ      (   ). 

 

Example NN 

Consider the cylinder 

 (   )   (
     
     
 

)  

Now 

ℱ  (
  
  

)  ( 
2  
  

)  

Notice that the matrix is always constant and diagonal and equal to the identity matrix if     . 

 

Example NN 

The cone 

 (   )   (
     
     
 

) 

has the diagonal, non-constant first fundamental form 

ℱ  (
  
  

)  ( 
2  
  

)  

 

Example NN 

Consider the 2-sphere of radius   

 (   )   (
         
         
     

)  

Now 

ℱ  (
  
  

)  ( 
2  
  2    2  

)  

This is non-constant, but always diagonal. 
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Example NN 

The helicoid might not be a very important surface, but it is fascinating. The parameterisation, 

which closely resembles that of the cone, is 

 (   )   (
     
     
 

) 

and the first fundamental form is diagonal and non-constant: 

ℱ  (
  
  

)  (
  
  2 +  

)  

 

Example NN 

We end this subsection by finding the first fundamental form of the Gaussian surface from Ex-

ample NN, parameterised by 

 (   )   (

 
 

   
 
 (
     )

)  

The first fundamental form is thus 

ℱ  (
  
  

)  

(

 
 +

   2

 
  
 
 (
     )     

  
  
 
 (
     )

    

  
  
 
 (
     )  +

   2

 
  
 
 (
     )

)

   

Far from the origin, where  2 +  2 is big, the surface looks very much like the (flat) plane 

 (   )    ̂ +   ̂ with diagonal first fundamental form     (   ), the identity matrix. So we 

would expect the first fundamental form of the Gaussian to tend to the same diagonal matrix, 

and, indeed, ℱ      (   ) when  2 +  2   . 

4.3.4.3 Isometries 

In this subsection, we are interested in functions        2 between two surfaces    and  2. Let 

     (  ) and  2   2( 2). Since we prefer to use surface coordinates to specify points on 

surfaces, we prefer to work with a function       2 instead. The relation between   and   is 

pretty obvious: 

   2      
   

where   
          is the inverse of         . Since we are mainly interested in ‘nice’ func-

tions, we will require   and   to be diffeomorphisms.47 

                                                             
47 Notice that we use non-bold italics to denote functions between two parameter regions (e.g.  ) and 
between two surfaces (e.g.  ), even though the image is a vector. 
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Definition NN 

A diffeomorphism        2 is called an isometry if every curve      is mapped to a curve 

 ( )   2 of the same length. 

If there exists an isometry        2 between    and  2, then    and  2 are said to be isometric. 

Example NN 

Let    be the plane    , parameterised by   (   )    ̂ +   ̂  (   ) where (   )      
2, 

and let  2 be the unit-radius circular cylinder  2 +  2   , given parametrically by  2  (   )  

(           ) where (   )   2  [    [   . 

The first fundamental forms of    and  2 are 

ℱ      (   )  ℱ2      (   )  

respectively. Introduce the diffeomorphism 

      2 

  (   )  (   )  (   )  

with the corresponding diffeomorphism    2      
  : 

       2 

  (   )  (           ) 

Let      ( ( ))     be any curve on   . This curve is of length 

   ∫√( ̇)
 ℱ  ̇  

 

  

Consider now the curve  2   (  )   2, the image of   on  2, given by  . Since    2      
   

and      ( ( )) we have, naturally, 

 2   2( (  
  (  ( ( ))))   2( ( ( ))   2( ( )) 

where 

      

is the f-curve    2. Thus, the image  ( )   ( ( )) is the curve in the parameter region of the 

second surface that corresponds to the curve  ( ) in the parameter region of the first surface. 

The length of  2 is therefore 

 2  ∫√( ̇) ℱ2 ̇  
 

 ∫√( ̇) ℱ2 ̇  
 

 

since  ( )   ( ) for every    . But since the plane and the cylinder, parameterised the way 

we do here, have the same first fundamental forms, 
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 2      

Therefore, any curve    on the plane    has the same length as its image  2   (  ) on the cylin-

der when the mapping   is used. Thus   is an isometry, and the plane and the cylinder are iso-

metric. 

The result above is actually obvious. Indeed, draw any curve, using a red pencil, on a piece of 

paper, and then fold the paper to the cylinder. Then, no matter what curve you drew, the curve 

will have the same length on the resulting cylinder. Hence, a plane and a (circular) cylinder are 

isometric surfaces. (In fact, the result holds even if you use any other colour than red.) Let us call 

this procedure the ‘kindergarten test of isometry’. The kindergarten test can also show that a 

plane is isometric to an elliptical cylinder, a circular cone, and even an elliptical cone, as the au-

thor just tried. 

 

Figure 43. A piece of paper can be folded into a cone, and the length of any curve on the paper will remain 
unchanged. 

The kindergarten test fails for the sphere. Indeed, from experience, we know we cannot deform a 

(initially flat) piece of paper into a sphere. Thus, we suspect there to be no isometry     2 

where     
2 and  2   

2. 

Since curve lengths are computed using the first fundamental form of a surface, the following 

result should not be that surprising. 

Proposition NN 

A diffeomorphism       2 is an isometry if and only if the first fundamental forms of    and 

     are the same for every f-surface    with image   . 
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Proof 

⇐) If      ( ( )) is any curve on   , where       
  is any f-surface with image   , then its 

length is    ∫ √( ̇) ℱ  ̇   
 where ℱ  is the first fundamental form of   . The length of the im-

age  2   (  )   (  ( ( )))   2( ( )), where  2       is an f-surface with image  2, is 

 2  ∫ √( ̇)
 ℱ2 ̇   

 where ℱ2 is the first fundamental form of  2      . By hypothesis, 

ℱ  ℱ2, and so     2. 

⇒) Conversely, suppose that   is an isometry. This means that, for every curve       of length 

  , the curve  2   (  ) has length  2 and     2. Thus, if you introduce an f-surface 

      
  such that      ( ) and an f-curve       such that      ( ( )), then 

   ∫ √( ̇)
 ℱ  ̇   

 where ℱ  is the first fundamental form of   . But since   is an isometry, 

 2  ∫ √( ̇)
 ℱ2 ̇   

    where ℱ2 is the first fundamental form of  2      . Thus 

∫ √( ̇) ℱ  ̇   
 ∫ √( ̇) ℱ2 ̇   

 for every f-curve      , and one can show that the only pos-

sibility is ℱ  ℱ2 by studying a set of suitable curves. Thus, for our choice of   , the fundamental 

forms ℱ  and ℱ2 of    and      are the same. But since    was completely arbitrary, the equality 

of the forms must hold for any choice of   . ∎ 

The above result agrees with some of our earlier experiences. For instance, we saw that the 

plane    and the (unit) cylinder  2 are isometric, and an isometry is given by 

       2 

  (   )  (           )  

and, indeed, our parameterisation of the plane,      ̂ +   ̂  (   ) with    
2    2 +   2 is, 

via  , transformed to a parameterisation of the cylinder,  2  (           ) with   2
2    2 +

  2; thus    
2    2

2. 

4.3.4.4 Angles and Conformality 

Let    and  2 be surfaces, and let       and   
     be two curves on   . Let        2 be a 

diffeomorphism. Then  2   (  )   2 and  2
   (  

 )   2 are two curves on  2. If        
  

is a point of intersection of    and   
 , then  ( )   2   2

  is a point of intersection of  2 and  2
  

[because        
  (    )  (    

 ) and       ( )   (  ) and, similarly, 

    
   ( )   (  

 ). Thus  ( )   (  )   (  
 )]. 

At     , the angle    of intersection between    and   
  is defined as the angle between their 

tangent vectors at  . The angle of intersection  2 between  2 and  2
  at  ( )   2 is defined anal-

ogously. If   is such that     2, that is, if it preserves the angle of intersection at any point of 

intersection of any pair of curves, then it is said to be conformal. 

Definition NN 

Let        2 be a diffeomorphism. If   preserves angles, then   is conformal. 

 

Proposition NN 

Let    ( ) be a surface, and let    ( ( )) and     (  (  )) be two curves on  . If 

   (   )   ( ( ))   (  (  ))       is a point of intersection, then the corresponding an-

gle of intersection is 
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  ̇ ̇ +  ( ̇ ̇ +  ̇ ̇ ) +   ̇ ̇ 

√  ̇2 +    ̇ ̇ +   ̇2√  ̇ 2 +    ̇  ̇ +   ̇ 2
 

where 

 ( )  ( ( )  ( ))   ( )  (  ( )   ( )) 

and 

  2     2 +       +    2 

is the first fundamental form of  . 

Proof 

The tangent vector to   at   is 

   
 

  
( ( ( )))   ̇( ( ))   ̇( )   (

    
    
    

)(
 ̇
 ̇
)   (

   ̇ +    ̇
   ̇ +    ̇
   ̇ +    ̇

) 

where   ,   , … are evaluated at (   ) and  ̇ and  ̇ are evaluated at  . Similarly, the tangent vec-

tor to    at   is 

 2   (

   ̇
 +    ̇

 

   ̇
 +    ̇

 

   ̇
 +    ̇

 
) 

where   ,   , … are evaluated at (   ) and  ̇  and  ̇  are evaluated at   . Thus, 

        
    2
|  || 2|

       
  
2 ̇ ̇ +      ̇ ̇

 +      ̇ ̇
 +   

2 ̇ ̇ + 

√  
2 ̇2 +       ̇ ̇ +   

2 ̇2 + √  
2 ̇ 2 +       ̇

  ̇ +   
2 ̇ 2 + 

 

       
  ̇ ̇ +  ( ̇ ̇ +  ̇ ̇ ) +   ̇ ̇ 

√  ̇2 +    ̇ ̇ +   ̇2√  ̇ 2 +    ̇  ̇ +   ̇ 2
  

∎ 

Proposition NN 

A diffeomorphism       2 is conformal if and only if the first fundamental forms of    and 

     are proportional for every f-surface    with image   . 

Note. Two first fundamental forms    
2      

2 +        +     
2 and   2

2   2  
2 +

  2    +  2  
2 are proportional iff there exists a scalar field       such that    

2  

 (   )  2
2. This implies, in particular, that  2   (   )  . But since    and  2 both are positive 

by definition and regularity, it follows that, in fact,       . 

Proof 

⇐) Let    be an f-surface with image   , and consider two curves      ( ( )) and   
  

  ( 
 (  ))    . Let      (   )    ( ( ))    ( 

 (  ))       
 . The corresponding angle of 

intersection is 
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  ̇ ̇ +  ( ̇ ̇ +  ̇ ̇ ) +   ̇ ̇ 

√  ̇2 +    ̇ ̇ +   ̇2√  ̇ 2 +    ̇  ̇ +   ̇ 2
  

The images  2   (  )   (  ( ( )))   2( ( )) and  2
   (  

 )   (  ( 
 (  )))   2( 

 ( )) 

where  2       is the f-surface with image  2 given by  . Thus, by definition, the angle of in-

tersection of  2 and  2
  at  2   (  ) is 

 2        
 2 ̇ ̇

 +  2( ̇ ̇
 +  ̇ ̇ ) +  2 ̇ ̇

 

√ 2 ̇
2 +   2 ̇ ̇ +  2 ̇

2√ 2 ̇
 2 +   2 ̇

  ̇ +  2 ̇
 2

 

where   2
2   2  

2 +   2    +  2  
2 is the second fundamental form of  2. By assumption, 

  2
2     2, that is,  2    ,  2    , and  2    . Thus, 

 2        
   ̇ ̇ +  ( ̇ ̇ +  ̇ ̇ ) +    ̇ ̇ 

√   ̇2 +     ̇ ̇ +    ̇2√   ̇ 2 +     ̇  ̇ +   ̇ 2
 

 
 (  ̇ ̇ +  ( ̇ ̇ +  ̇ ̇ ) +   ̇ ̇ )

√ (  ̇2 +    ̇ ̇ +   ̇2)√ (  ̇ 2 +    ̇  ̇ +   ̇ 2)

    

⇒) This is left as an exercise. ∎ 

Corollary NN 

Every isometry is conformal. 

4.3.4.5 Surface Area 

Let   be a parameterised surface. Then its area   ∬ |     |     
 can easily be computed if 

you know some f-surface        with   as its image. However, since the first fundamental 

form is all that is required to measure distances on the surface, one would suspect that it also 

suffices when it comes to area computations. And, indeed, it does. 

Proposition NN 

Let    ( ). Then |     |  √   ℱ  √    
2, where ℱ and   2     2 +       +    2 

is the first fundamental form of  . 

Proof 

If  (   )  ( (   )  (   )  (   )) then    (        ),    (        ) and so, by direct 

computation, 

|     |  √

  
2  
2           +   

2  
2 +

+  
2  
2           +   

2  
2 +

+  
2  
2           +   

2  
2

 

 √(  
2 +   

2 +   
2)(  

2 +   
2 +   

2)  (    +     +     )
2  √    2  

∎ 
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4.3.4.6 Conclusion and Examples 

Let    ( )     be a surface. Traditionally, you would use some parameterisation of  , such 

as  , to compute distances (curve lengths) along the surface, angles, and areas. In this section, we 

have found an alternative approach to these computations. We have defined three scalar fields 

 ,  , and   on the parameter region   of the surface, and using these fields alone, we can com-

pute distances along curves on  , angles between intersecting curves, and surface areas. The 

descriptions of the curves and subsurfaces are given solely by the (two) surface coordinates in   

(and not by the (three) coordinates of the surrounding space), and the results agree with meas-

urements that can be performed using the explicit parameterisation   of   as a subset of   . The 

point with the ‘new’ approach is that we need not care about the explicit form of  . Indeed, we 

need not even be ‘aware’ of the fact that   is a subset of some higher-dimensional space,    in 

this case. All we need to care about is the surface alone, with its coordinates (   )     2. 

Our first example shows that our newly-developed machinery actually reduces to well-known 

formulae in a simple case. 

Example NN 

A sphere of radius     has a coordinate system with coordinates (   )    [   ]  [    [ 

and a first fundamental form 

  2   2  2 +  2    2    2 

(that is ‘regular’ everywhere except at the poles   {   }). Consider the equator   given by 

 ( )  (
 

 
  )    [    [  

The length of this curve is 

∫  
 

 ∫ √( ̇) ℱ ̇  
2 

 

 ∫ √ 2    2    
2 

 

 ∫     
 

 
  

2 

 

      

Consider now the area of the entire surface. This is 

∬√    2    
 

 ∬√     2      
 

 ∬ 2         
 

  2∫       
 

 

∫   
2 

 

    2  

The reader recognizes the classical volume element 

      2          

in spherical coordinates. 

Our next examples illustrates the idea that we really only need the first fundamental form to find 

the metric properties of a surface. We do not even need to be ‘aware’ of how the surface is em-

bedded in   . 
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Example NN 

Consider a surface   with coordinates (   )    [       ]2, and first fundamental form 

  2    2 +     2  

Consider now the curve    ( ) where the f-curve 

 ( )  (   )     [    ]  

thus   is a straight line in  . 

The length of  , in the coordinate region    2, of course, is   √ , if we use the usual metric in 

 2. However,   is only a mathematical construct, the parameter (or, coordinate) region, and its 

metric is highly irrelevant. We are interested in the ‘physical’ length of  , that is, the length of its 

‘image’ in the ‘real’ space. Thus, if we happen to know that    ( )     for some f-surface  , 

then we are interested in the length of the f-curve  ( ( )) using the metric of   . 

We don’t know of any  , but we do know the first fundamental form of  . Thus the sought curve 

length is 

∫  
 

 ∫ √( ̇) ℱ ̇  
 

  

 ∫ √ +     
 

  

       

If the reader thinks the above example is unnatural and artificial, he might wish to know that it is 

an immediate preparation for Einstein’s general theory of relativity. 

4.3.4.7 Some Simple Results 

Before we end this subsection, we derive some simple results about curves on surfaces, which 

we will need later on. 

Lemma NN 

Let    ( )   ( ( ))   ,      (  )   (  (  ))   , and  2   2( 2)   ( 2( 2))    be 

curves on a surface    ( ). Then the following relations hold (pointwise): 

(1)  ̇   ̇  +  ̇   

(2)  ̇   ̇2   ̇ 
 ℱ ̇2 

where ℱ is the first fundamental form of  . 

Proof 

(1) By the chain rule,  ̇( )   ̇( ( ))   ̇( )   (

    
    
    

)(
 ̇
 ̇
)   (

   ̇ +    ̇
   ̇ +    ̇
   ̇ +    ̇

)   ̇  +  ̇  . 

(2)  ̇   ̇2  ( ̇   +  ̇   )  ( ̇2  +  ̇2  )   ̇  ̇2     +  ̇  ̇2    ̇ +  ̇  ̇2     +

 ̇  ̇2        ̇  ̇2 +  ( ̇  ̇2 +  ̇  ̇2) +   ̇  ̇2   ̇ 
 ℱ ̇2  
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4.3.5 Surface Curvature – The Second Fundamental Form 

How much does a surface, considered a subset of   , ‘curve’, or ‘deviate from being a plane’? In 

this subsection, we will develop a set of measures of surface curvature, at first using a rather 

intuitive language, but we will end by reformulating our results in a more powerful language 

that will easily generalise to measures of curvature of general  -dimensional spaces, in a sense 

that we will describe later. In this section, all curves and surfaces are assumed regular. 

Perhaps the most obvious way of measuring the curvature of a surface is to measure the curva-

ture of space curves on the surface. Indeed, on a plane      you can have straight lines     

of zero curvature (and torsion), while this is clearly impossible on a sphere,  2, say. However, 

even on a plane   you can have curves of arbitrarily high curvature (but not, of course, torsion). 

For instance a planar circle of radius   has curvature   ⁄ . To resolve this issue, we will separate 

the curvature of a space curve on a surface into two parts, namely, the normal curvature and the 

geodesic curvature. 

Let    ( ( ))    be a curve on a surface    ( ). Let       be a unit-speed parameteri-

sation function of  . The unit tangent vector to   at    (   )   ( ) is then  ̂( )   ̇( )      

in the tangent space of   at  . At  , the unit normal vector of   is  ̂(   ), which is orthogonal to 

every vector in    ; in particular,  ̂   ̇( ). Therefore the vectors  ̂(   ),  ̇( ) and  ̂(   )  

 ̇( ) form a right-handed ON basis at  . The f-curve’s acceleration vector at this point is 

 ̈( )   ̇( ). Therefore,  ̈( )      { ̂(   )  ̂(   )   ̇( )} and so there are unique scalars 

  ( ) and   ( ) such that 

 ̈( )    ( ) ̂(   ) +   ( ) ̂(   )   ̇( )  

These scalars are called the normal and geodesic curvature of   at  , respectively.    measures 

the curvature of   due to its attachment to the surface  , while   , since  ̂(   )   ̇( )     , 

measures the curvature that   makes inside the surface ‘by its own will’. It should be clear that, 

given a curve     and a surface  , the normal and geodesic curvatures are well-defined up to 

their signs, which depend upon the orientations of the surface and the curve. 

We summarise this in 

Definition NN 

Let    ( ( ))   ( )    be a curve on a surface    ( ) with   unit-speed, and write 

 ̈( )    ( ) ̂(   ) +   ( ) ̂(   )   ̇( )  

as the f-curve’s acceleration vector at    (   )   ( ). Then the numbers    and   , that are 

uniquely determined by  ,  , and their orientations, are called the normal and geodesic curva-

tures of   at  , respectively. 

Pythagoras’s theorem yields immediately 

Corollary NN 

At any point of a curve   on a surface  , 

 2    
2 +   

2   
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In the present subsection, we are mainly interested in the normal curvature, and so we appreci-

ate the simple observation 

Corollary NN 

Let    ( ( ))   ( )    be a curve on a surface    ( ). If   is unit-speed, then 

  ( )   ̈( )   ̂(   ) at every    (   )   ( ). 

Consider a plane      and any curve     on it. Both the tangent and normal vectors of the 

curve are confined to the tangent space of the plane, and so, in particular, the second derivative 

of any f-curve with image   will lie in the tangent space. Thus, the normal curvature is identically 

zero, and the curvature      is purely geodesic. This motivates why the normal curvatures of 

curves on a surface are a measure of the surface’s curvature. Notice that, at any point     on 

some surface  , there are infinitely many curves passing through it, and so there are, in general, 

infinitely many normal curvature numbers associated with each point   on a surface. However, if 

two curves that pass through   have the same direction at  , then they will have the same normal 

curvature there, as is proved in the following proposition. 

Proposition NN 

Let      and  2    be two curves on a surface  , and let       2 be a point of intersection 

of    and  2. If    and  2 have the same instantaneous direction at  , that is, if their unit tangent 

vectors coincide (or differ by a sign) at  , then their normal curvatures coincide at  , too. 

Proof 

We will show this by deriving an alternative expression for the normal curvature of a single 

curve on the surface, and notice that this new formula only depends upon the unit tangent of the 

curve, from which the proposition follows. 

Let    ( ( ))   ( )    be a curve on the surface    ( ), with   unit-speed. At any point 

   (   )   ( ) we may write the curve’s velocity vector (that is, its unit tangent vector) as 

 ̇( )   ̇  +  ̇   

according to Lemma NN and so the acceleration vector at this point is 

 ̈( )   ̈  +  ̇(    ̇ +     ̇) +  ̈  +  ̇(    ̇ +     ̇)   ̈  +  ̇
2   +   ̇ ̇   +  ̈  +  ̇

2     

Thus, the normal curvature is 

    ̈( )   ̂(   )   ̇
2(     ̂) +   ̇ ̇(     ̂) +  ̇

2(     ̂) 

where     ̂      ̂    since    and    are tangent to the surface (indeed,  ̂ is defined to be 

parallel to the cross product of    and   ). But    (   ),    (   ),    (   ), and  ̂(   ) are 

properties of the f-surface, and so the only piece of information required in order to compute    

that comes from the curve is ( ̇( )  ̇( ))   ̇( ), the f-curve’s tangent vector in the parameter 

region   of the f-surface. In addition, the tangent vectors ( ̇  ̇) and  ( ̇  ̇)  (  ̇   ̇) yield the 

same normal curvature  . ∎ 

Let us now make 
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Definition NN 

Let  ( ) be an f-surface with coordinates (   )   . Then the numbers 

       ̂        ̂        ̂  

which are scalar fields on  , are called the coefficients of the second fundamental form of  , and 

the matrix 

  (
  
  

) 

is called the second fundamental form of  . 

Using this terminology, we thus have 

Corollary NN 

Let    ( ) be a surface with coordinates (   )   , and let    ( ( ))    be the image of a 

unit-speed f-curve     on  . Then the normal curvature of   at a point    (   )   ( ( )) is 

     ̇
2 +    ̇ ̇ +   ̇2   ̇   ̇ 

where  ̇( )  ( ̇( )  ̇( )) and  ,  , and   are the coefficients of the second fundamental form of 

 . 

4.3.5.1 Forms of some Common Surfaces 

Example NN 

Consider the plane    ( ) where 

 (   )   +   +    

where      is a fixed point in space,   and      are two orthonormal vectors, and 

(   )     2. The second fundamental form of   is 

  (
  
  

)  

Thus, any curve on   has necessarily zero normal curvature everywhere. 

 

Example NN 

Consider the circular cylinder    ( ) with radius     given by 

 (   )   (
     
     
 

)  (   )    [    [     

Since (of course!) 
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 ̂  
     

|     |
  (

    
    
 
)  

the second fundamental form of   is 

  (
   
  

)  

Thus, a curve       that encircles the cylinder without any vertical motion, that is, a (parame-

ter) curve     (
 

 
   ) for some fixed   [the constant 

 

 
 is chosen such that     is unit-speed], 

has the constant normal curvature 

     ̇
2 +    ̇ ̇ +   ̇2    ̇2     

 

 2
  

 

 
  

This is obvious, since      and so      
 

 
 since the curve is a circle of radius  . On the oth-

er hand, a curve that ‘climbs’ the cylinder parallel with its axis, that is, a (parameter) curve 

    (   ) for some fixed   [notice that     is unit speed], has always zero normal curvature: 

     ̇
2 +    ̇ ̇ +   ̇2    ̇2          

This is obvious, since such a curve is a straight line with    , and so, by necessity,     . (No-

tice that both curves considered have geodesic curvature     .) 

 

Example NN, continued 

We have seen that at any point    (   ) on the cylinder    ( ), a curve on   going in the    

direction has constant normal curvature  
 

 
, while a curve going in the    direction has zero 

normal curvature. 

What about a curve that goes in some direction in-between? Well, if the (unit-speed) curve’s 

tangent vector is ( ̇  ̇) in the parameter plane, then its normal curvature is 

     ̇
2 +    ̇ ̇ +   ̇2     ̇2     

Thus, 0 is the greatest normal curvature that we can possibly obtain. It is also the lowest abso-

lute normal curvature that we could possibly obtain. And we do obtain it; this is the curvature of 

the ‘vertical’ lines. What is the lowest possible curvature (that is, the highest absolute curvature) 

that we can obtain? Since the absolute curvature increases with increasing  ̇2, we wish to find 

the largest possible  ̇2. Since the curve is unit-speed, however,  ̇2 +  ̇2 is bounded from above, 

and so the largest  ̇2 is obtained when  ̇2   , and the curve is ‘horizontal’ , with – as we have 

seen – absolute normal curvature equal to   ⁄ . 

Thus the directions    and    are highly special, because they correspond to the directions in 

which a curve has the greatest and lowest absolute normal curvature, respectively. Also, the 
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normal curvatures  
 

 
 and 0 are special, because they are the normal curvatures with the high-

est and lowest possible magnitude, respectively. 

The directions    and   , at every point, are the principal directions of the cylinder48, and the 

normal curvatures    ⁄  and   are the corresponding principal curvatures. We will define these 

concepts precisely in the next subsection. 

4.3.5.2 The Principal Directions and Curvatures 

The plane and the cylinder cover both possibilities: 

Proposition NN 

Let    ( ) be a surface with   regular. Then, at any (   )   , either 

(1) any curve     passing though  (   ) will have the same normal curvature at  (   ), irre-

spective of its tangent direction at  (   ), or 

(2) there exists two distinguished directions49 [in the tangent plane/space] at  (   ), with a 

right angle between them, such that a curve passing through the point with the first (resp. 

the other) distinguished direction will have greater (resp. lower) normal curvature than any 

other curve passing through the point (that is, in any other direction). 

Proof 

TBW 

Definition NN 

Let    ( ) be a surface with   regular. Then, if  (   ) is a point such that every curve that 

passes through it will have the same normal curvature, the point  (   ) is called an umbilic, and 

the normal curvature is called the principal curvature at the point. If, on the other hand, there are 

two distinguished directions in which a curve will have greater and lower (respectively) normal 

curvature than any other curves through the point, then these two directions are called the prin-

cipal directions and the corresponding normal curvatures are called the principal curvatures. 

In the case of an umbilic, we often say that every direction is a principal direction, because, in-

deed, a unit-speed curve through the point will have the principal curvature no matter what its 

direction is. We need a way of computing the principal directions and curvatures of a surface. 

Definition NN 

Let ℱ and   be the fundamental forms of an f-surface. Then the Weingarten matrix is 

  ℱ     

                                                             
48 It is a ’coincidence’ that they, in this case, coincide with the partial derivatives of the parameterisation 
function  . Their definition relies on the fact that they, at every point, are the directions of greatest and 
lowest (normal) curvature. Hence, they do not even depend upon the f-surface, only the surface! 
49 We identify directions that are 180° apart. 
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Proposition NN 

Let   be the Weingarten matrix of an f-surface. Then the principal curvatures and directions are 

the eigenvalues and eigenvectors of  , respectively. 

Proof 

TBW 

Corollary NN 

The principal curvatures of an f-surface with fundamental forms ℱ and   are the roots of 

   (   ℱ)     

If there are two distinct principal curvatures     2, then the corresponding principal direc-

tions are given by (where   ( ̇  ̇) is a tangent vector in the parameter plane) 

(    ℱ)           

Proof 

TBW 

Example NN 

Let us verify Proposition NN in the case of the plane and the circular cylinder. In the case of the 

plane    ( 2) where  (   )   +   +    with   and   ON, the first and second fundamental 

forms are 

ℱ  (
  
  

)    (
  
  

)  

Thus, the principal curvatures are the roots of 

   (
   
   

)     

that is, every point is an umbilic with principal curvature    . 

The cylinder    ( 2) of radius    where  (   )  (             ) has first and second 

fundamental forms 

ℱ  ( 
2  
  

)    (
   
  

)  

The principal curvatures are therefore given by 

   (     
2  

   
)    

which is equivalent to 
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  {   
 

 
} 

which we recognizes as the correct principal curvatures of the  . The direction corresponding to 

    is given by 

(
   
  

) (
 ̇
 ̇
)  (

 
 
) 

with solution  ̇   . Thus, the corresponding tangent vector on   is 

 (
       
      
  

) (
 
 
)   (

 
 
 
) 

for some    . On the other hand, the direction corresponding to      ⁄  is given by 

(
  
    ⁄

) (
 ̇
 ̇
)  (

 
 
) 

with solution  ̇   . The corresponding tangent vector on   is 

 (
       
      
  

) (
 
 
)   (

       
      
 

) 

for some    . 

Now we can investigate some more interesting surfaces. Intuitively, one would expect every 

point on a sphere of radius   to be an umbilic. We will now verify this. 

Example NN 

The sphere of radius     is the image    ( ) of 

 (   )   (
         
         
     

)  

The first and second fundamental forms are 

ℱ  ( 
2  
  2    2  

)    (
   
      2  

)  

Thus, the principal curvatures are given by 

   (     
2  

      2     2    2  
)    

which is equivalent to 
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assuming, as always, that   {    }. Thus every point is an umbilic with the expected normal 

curvature. (Indeed, there is a unique great circle of radius     given a fixed point on the sphere 

and tangential direction.) 

 

Example NN 

Consider the elliptical paraboloid 

 2 +  2    

which is the image    ( ) of 

 (   )   (
     
     
 2

)  (   )    [    [  [   [  

However, there is a simpler parameterisation for our present needs, namely, 

  (   )   (

 
 

 2 +  2
)  (   )      2  

and we will use this instead. The (parameter curves of the) lowest part of   is shown below us-

ing both parameterisations. In any case, the ‘vertex’ (point of symmetry) is at the origin. 

  

Let us stick to the latter parameterisation. The first and second fundamental forms of   are then 

ℱ  (
 +   2    

    +   2
)    

 

√  2 +   2 +  
(
  
  

)  

Consider now, in particular, the vertex (   )  (   ). Here are 



ANDREAS REJBRAND D R A F T  http://english.rejbrand.se 

 225/314 

ℱ(   )  (
  
  

)   (   )  (
  
  

) 

and so the principal curvatures are given by 

   (
    
    

)    

which is equivalent to 

     

Thus, this point is, as we would expect, an umbilic. 

We end this section by making 

Observation NN 

At any point on a surface, the sign of a non-zero principal curvature is +  (resp.   ) iff a curve 

passing through the point in the direction of the corresponding principal direction curves (that 

is, has an acceleration vector) in the same (resp. opposite) ‘binary direction’50 as the surface’s 

standard unit normal at that point. 

Proof 

This is immediate. Indeed, consider a curve    ( ) on a surface  , that, at some point, is head-

ing in a principal direction. Then the normal curvature    of the curve is simply the correspond-

ing principal curvature, but it is also given by Corollary NN, namely, 

    ̈   ̂ 

where       is unit-speed. Since, by hypothesis,     ,  ̈ and  ̂ are not orthogonal (in partic-

ular,  ̈   ) and      iff  ̈   ̂    and      iff  ̈   ̂   . ∎ 

For example, in the case of the cylinder, a principal curvature at any point is    ⁄   , and, 

indeed, a curve in the    direction has an acceleration vector pointing towards the  -axis, while 

the standard unit normal is in the direction of      , which points away from the  -axis. And 

the sphere has everywhere the principal curvature    ⁄ , and any curve on it will curve towards 

the origin, while the standard unit normal points away from it. 

4.3.5.3 The Gaussian and Mean Curvature 

We make 

Definition NN 

Let    and  2 be the principal curvatures (which are equal at an umbilic) at a point    . Then 

           2        

        +  2 

are the Gaussian and the mean curvature of the surface   at the point  , respectively. 

                                                             
50 Two non-orthogonal vectors   and   point in the same binary direction if and only if      . 
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Remark. The mean curvature is also commonly defined as   
 

2
(  +  2) so that it is the true 

arithmetical mean of the principal curvatures, and not twice this mean. The current author, 

however, strongly prefers the beauty of the              formulae. 

Before we even motivate the importance of these two concepts (and they are truly important!), 

let us compute these curvatures for a number of very simple surfaces. 

Example NN 

Every point in the plane  (   )   +   +    is an umbilic with principal curvature zero. 

Therefore, both the Gaussian and the mean curvatures are identically zero on the plane. 

 

Example NN 

The cylinder  (   )  (             ) has principal curvatures    ⁄  and   at every point. 

Thus the Gaussian and mean curvatures are   and    ⁄  at every point, respectively. 

 

Example NN 

In the sphere (with outward-pointing normal field) of radius   every point is an umbilic with 

principal curvature    ⁄ . Thus the Gaussian and mean curvatures are identically   2⁄  and 

   ⁄ , respectively. 

As usual, it is possible to derive explicit formulae for the Gaussian and mean curvatures. Using 

the result below, we can compute   and   directly from the fundamental forms; in other words, 

we don’t need to compute the principal curvatures as an intermediate step. 

Proposition NN 

Let ℱ and   be the fundamental forms of an f-surface  . Then the Gaussian and mean curva-

tures are 

  
    2

    2
 
    

   ℱ
   

  +       

    2
  

Proof 

The principal curvatures are the roots of 

     (   ℱ)     ((
  
  

)   (
  
  

))     (
        
        

)  

 (    )(    )  (    )2  

 (    2) 2 + (         ) +     2 

or, equivalently, since, by regularity, |     |
2      2   , the roots of 

 2 +
         

    2
 +

    2

    2
    

Let the coefficients be   
2        

     
,   

     

     
. Then 
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 2 +   +      

If    and  2 are the principal curvatures (possibly     2), then 

 2 +   +   (    )(   2) 

and identification of polynomial coefficients yields 

    +  2     
  +       

    2
      2    

    2

    2
  

∎ 

Given an f-surface  , the tuple fields (    2) and (   ) contain exactly the same information. 

Indeed, Definition NN is a map (    2)  (   ), and the inverse map is given by, up to the im-

material ordering of the principal curvatures, 

Proposition NN 

Let   and   be the Gaussian and mean curvatures of an f-surface  , respectively. Then the prin-

cipal curvatures, at every point, are 

   2  
 

 
 √

 2

 
    

Proof 

Trivial, but notice that the relation between the arithmetical mean and the geometric mean 

yields can be written, assuming the principal curvatures to be non-negative, 

  +  2
 

 √   2 

or 

 

 
 √  

which squares to 

 2

 
  2  

If exactly one principal curvature is negative, then     and so 
  

 
   is clearly non-negative. If 

both principal curvatures are negative, then     and   2 are positive, and so 

(   ) + (  2)

 
 √   2 

or  
 

2
 √  which also squares to 

  

 
  . ∎ 

Corollary NN 

If   and   are the Gaussian and mean curvatures of some f-surface, then 
  

 
    . 
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Example NN 

Let us compute the Gaussian curvature for the elliptic paraboloid  2 +  2   2, given by 

 (   )   (

 
 

 2 +  2
)  (   )     2  

The fundamental forms were found in Example NN, and so Proposition NN yields 

  
    2

    2
 

 
  2 +   2 +  

( +   2)( +   2)     2 2
 

 

(  2 +   2 +  )2
  

 

Example NN 

Let us now turn to the hyperbolic paraboloid  2   2    given by 

 (   )   (

 
 

 2   2
)  (   )     2  

The fundamental forms are 

ℱ  (
 +   2     

     +   2
)    

 

√  2 +   2 +  
(
  
   

) 

and so the Gaussian curvature is 

  
    2

    2
 

  
  2 +   2 +  

( +   2)( +   2)     2 2
 

  

(  2 +   2 +  )2
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It follows from Observation NN that 

Observation NN 

At any point on a surface, 

(1)     iff           2   , that is, iff any curve passing through the point has an acceler-

ation vector with the same ‘binary direction’ relative to the standard unit normal. There 

cannot be any curve passing through the point with zero normal curvature. 

(2)     iff            2   , that is, iff there are curves passing through the point with 

the their acceleration vectors in the same ‘binary direction’ as the standard unit normal, 

and, also, curves that are passing through the point with their acceleration vectors in the 

opposite ‘binary direction’. Assuming only that the normal curvature is a continuous func-

tion of the curve’s direction at the point, therefore, there are curves passing through the 

point with zero normal curvature. 

(3)     iff (    )  ( 2   ). There are curves passing through the point with zero normal 

curvature. If, in particular,     2   , then the surface is a (part of a) plane. 
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Example NN 

The plane and the cylinder are surfaces with     everywhere, and the sphere and the elliptic 

paraboloid are surfaces with     everywhere. On the other hand, the hyperbolic paraboloid 

has     everywhere. Another example of a surface with everywhere negative Gaussian curva-

ture is the hyperboloid  2 +  2   2    (exercise). Notice how Observation NN is clearly visible 

in all these cases: 
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4.3.5.3.1 Intrinsic and Extrinsic Quantities: The Remarkable Theorem 

Consider a bug (ideally ‘two-dimensional’), named Buggy, living on a surface  . She can measure 

the distance of any curve on  , and the angle of intersection between any two curves. She can 

also determine the area of any region of  . Thus, she can determine the first fundamental form of 

the surface, using the surface coordinate system of her choice. We therefore say that the first 

fundamental form is an intrinsic property of the surface (and, of course, a surface coordinate 

system). 

On the other hand, Buggy has no idea that   is actually a hypersurface of some higher-

dimensional space,    in this case. And no matter how she measures distances, angles, and areas 

(locally), she will not be able to determine if she lives on a plane or an elliptical cylinder, for they 

are isometric, and so one can always find coordinate systems in both such that their first funda-

mental forms are identical at corresponding points. Globally, however, a plane and a cylinder are 

very different. Indeed, if she walks along a straight line from her home, and then eventually 

comes back to her home, she can pretty much rule out the plane hypothesis. If her house looks 

the way it looked before, perhaps she is living on a cylinder. On the other hand, if the house is 

mirrored, perhaps she is living on a Möbius strip. Although these three surfaces are isometric to 

each other, that is, they share the same local geometry, their global properties, or their topolo-

gies, differ. 

The second fundamental form is an extrinsic property, since Buggy cannot determine it herself 

from inside the surface. However, some properties of the second fundamental form, she can in 

fact deduce. For instance, it is remarkable that the Gaussian curvature can be expressed in the 

coefficients of the first fundamental form alone (compare with Proposition NN, which also con-

tains the coefficients of the second fundamental form): 

Proposition NN 

Consider a surface with first fundamental form ℱ and Gaussian curvature  . Then 
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|
|

 
 
 
   +     

 
 
   

 
 
     

 
 
  

   
 
 
    

 
 
    

|
|
 
|
|

 
 
 
  

 
 
  

 
 
    

 
 
    

|
|

(    2)2
  

Thus, 

Theorem NN (Gauss’s Theorema Egregium) 

The Gaussian curvature of a surface is an intrinsic property of the surface. 

or, put differently, 

The Gaussian curvature is unchanged by an isometry. 

The Theorema Egregium has many important applications; one of the most obvious is stated on 

the Wikipedia page of the theorem51: 

“An application of the Theorema Egregium is seen in a common pizza-eating strat-

egy: A slice of pizza can be seen as a surface with constant Gaussian curvature 0. 

Gently bending a slice must then roughly maintain this curvature (assuming the 

bend is roughly a local isometry). If one bends a slice horizontally along a radius, 

non-zero principal curvatures are created along the bend, dictating that the other 

principal curvature at these points must be zero. This creates rigidity in the direc-

tion perpendicular to the fold, an attribute desirable when eating pizza, as it holds 

its shape long enough to be consumed without a mess.” 

We are not going to prove the Theorema Egregium. 

4.3.6 Geodesics 

Let    ( ) be a connected surface, and pick any two points     2    in the parameter plane 

 . There are infinitely many curves    ( ( ))    starting at     (  ) and ending at 

 2   ( 2). The length of the shortest such curve is called the shortest distance between    and 

 2, which, of course, in general, is greater than the Euclidean distance |    2| as measured in 

the ambient   . A curve of shortest distance connecting the points is called a shortest path. For-

mally, let (of course, there isn’t anything special about the interval [   ]) 

  {  [   ]     ( )      ( )   2} 

and then 

 (    2)     
   
∫ √ ̇ ℱ ̇  
 

 

 

is the distance between the points     (  ) and  2   ( 2) with coordinates    and  2, re-

spectively. If there is a curve     with length  (    2), then this curve is called a shortest path 

between the points. On a plane, the shortest distance between two points is along the straight 

                                                             
51 Theorema Egregium. (2011, January 25). In Wikipedia, The Free Encyclopedia. Retrieved 11:31, Sep-
tember 18, 2011, from 
http://en.wikipedia.org/w/index.php?title=Theorema_Egregium&oldid=409875634 

http://en.wikipedia.org/w/index.php?title=Theorema_Egregium&oldid=409875634
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line connecting the points. This line clearly has zero curvature. In particular, it has zero geodesic 

curvature everywhere. Any other curve connecting the same pair of points will be longer, and 

will not have zero geodesic curvature everywhere. Consider now a cylinder of radius    , with 

its usual coordinate system, that is,  (   )  (             ). If two points on the cylinder 

have the same   or   coordinate, then it is again obvious that the shortest path between them is 

along a curve of (identically) zero geodesic curvature. Clearly, when it comes to shortest paths, 

the condition that a curve has identically zero geodesic curvature appears significant. We thus 

give such a curve a special name: 

Definition NN 

A curve on a surface is a geodesic iff its geodesic curvature is identically zero. 

It should be clear that a shortest path between two points is a geodesic, which we will show in a 

few paragraphs. However, it is easy to see that the converse cannot be true. Consider the follow-

ing cylinder: 

 

Figure 44. Two geodesics between the same pair of points on a cylinder. 

The red curve is a shortest path, and a geodesic. However, the yellow curve is also a geodesic, 

but obviously not a shortest path. This ‘strangeness’ is caused by the topology of the cylinder, 

and one might say that geodesics are the local shortest paths. By this we mean, informally, that if 

we take a geodesic   between two points and ‘deform’ it slightly, keeping the end points fixed, 

then the new curve will not be a geodesic, and it will be (at the very least usually!) longer than 

the original curve (the geodesic). 

Also, depending on the topology of a (connected) surface, although any two points does have a 

shortest distance given by (↑), there might not exist a shortest path, i.e., a curve between the two 

points with this shortest distance. This possibility is obvious from our careful usage of the infi-

mum and not the minimum. A simple example is the manifold surface  2     where 

   {(   )   
2  2 +  2   2},   ]   [ and the two points    (    ) and  2  (   ).  

Proposition NN 

A curve between two points is a geodesic if and only if the length of a unit-speed f-curve of the 

curve is stationary (for instance, a local minimum) in the usual sense of the calculus of varia-

tions. In addition, the Euler—Lagrange equations are 
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   ̇
2 +     ̇ ̇ +    ̇

2  
 

  
(   ̇ +    ̇) 

   ̇
2 +     ̇ ̇ +    ̇

2  
 

  
(   ̇ +    ̇) 

where ( ̇  ̇) is the parameter-plane tangent vector of the unit-speed f-curve. 

 

Lemma NN 

A unit-speed f-curve           on a surface    ( ) is a geodesic iff  ̈     and  ̈     

everywhere. 

Proof 

Since   is unit-speed,  ̈   ̇, and if   is also a geodesic,  ̈     , that is,  ̈     and  ̈    . Con-

versely, if  ̈     and  ̈     then  ̈     . Thus,   is a geodesic, and, in particular,  ̈   ̇, that is, 

  is unit-speed. ∎ 

Proof of Proposition NN 

Clearly, an f-curve       maximizes/minimizes ∫ √ ̇ ℱ ̇  
 

 
 iff it maximizes/minimizes 

∫  ̇ ℱ ̇  
 

 
. Since the latter expression is simpler, we choose as our Lagrangian the expression 

 (     ̇  ̇  )   (   ) ̇2 +   (   ) ̇ ̇ +  (   ) ̇2 

and then the Euler—Lagrange equations 

  

  
 
 

  

  

  ̇
 

  

  
 
 

  

  

  ̇
 

read 

   ̇
2 +     ̇ ̇ +    ̇

2  
 

  
(   ̇ +    ̇) 

   ̇
2 +     ̇ ̇ +    ̇

2  
 

  
(   ̇ +    ̇)  

Let           be unit-speed, where        is an f-surface for the surface in which the 

curve lives. Using 

                        

we find 

                    +                   
 

  
      (    ̇ +     ̇) 

 

  
   (    ̇ +     ̇)     

 

  
  (    ̇ +     ̇)    +    (    ̇ +     ̇) 

and so the first Euler—Lagrange equation reads, after division by 2, 

(      ) ̇
2 + (      +       ) ̇ ̇ + (      ) ̇

2  

  (    ̇ +     ̇)     ̇ + (     ) ̈ + (    ̇ +     ̇)     ̇ +    (    ̇ +     ̇) ̇ +

+ (     ) ̈ 

which is equivalent to 
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      ̇     ̇ + (     ) ̈ +         ̇ ̇ +    (    ̇) ̇ + (     ) ̈ 

Now,   is a geodesic iff  ̈     and  ̈    . The first of these requirements is, using Lemma NN, 

 

  
( ̇  +  ̇  )       

which expands to 

  ( ̈  +  ̇(    ̇ +     ̇) +  ̈  +  ̇(    ̇ +     ̇))     

  ̈     +  ̇
2      +  ̇ ̇      +  ̈     +  ̇ ̇      +  ̇

2        

But this is the exact same equation as (↑), the first Euler—Lagrange equation. Similarly, the se-

cond geodesic requirement  ̈     is seen to be equivalent to the second Euler—Lagrange equa-

tion (↑). Thus, a unit-speed f-curve   on the surface   is a geodesic if and only if the Euler—

Lagrange equations are satisfied for it. ∎ 

Corollary NN 

Given a point     and a unit vector  ̂     , there is a unique unit-speed geodesic passing 

through   with unit tangent vector  ̂ there. 

This follows from the theory of differential equations. We also note that 

Corollary NN 

If a unit-speed f-curve   is a shortest path between two points, then   is a geodesic. 

Proof 

If   is a shortest path, then it is a local minimum, and, in particular, a stationary curve with re-

spect to the ‘distance’ Lagrangian. But then, according to Proposition NN, the f-curve (and its 

image) is a geodesic. ∎ 

4.3.7 The Covariant Derivative 

The concept of a covariant derivative, or a ‘connection’, is fundamental to modern differential 

geometry on manifolds. In this subsection, we will introduce a very intuitive and easy-to-grasp 

(but also restricted) special case of the covariant derivative, namely, the ‘metric’ (or ‘Levi—

Civita’) connection of a two-dimensional surface in Euclidean   . 

Consider yourself somewhere on the equator, walking with constant speed along it to the east. 

You are carrying a flagpole, which you are pointing to the east; the flagpole is representing your 

velocity vector. You don’t understand quite why, but every now and then you walk past a red 

cottage, and they all look identical to each other. In fact, for some bizarre reason, if you throw an 

egg at one of the windows of one cottage, then the next cottage will have a splashed egg attached 

to the corresponding window, and at the very same point of impact! Anyhow, as far as you can 

tell, you are walking with constant velocity; that is, the flagpole is always pointing in the same 

direction. However, Buggy, who is presently on vacation on the moon, begs to differ. According 

to her, you are walking in a circle with a constant, non-zero, acceleration vector, always pointing 

towards the centre of the circle. Hence, although you cannot believe it, the flagpole is actually 

rotating, one full lap every time you walk past a red cottage! 

Thus, the derivative of your flagpole (or, more accurately, of your velocity vector) is, of course, 

non-zero, but to you, it appears to be zero. The covariant derivative is a different operator that 
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will yield the ‘derivative’ that you experience, being attached to the surface of the Earth. Basical-

ly, the covariant derivative is equal to the usual derivative, but also projects the result onto the 

tangent space of the surface, that is, it removes the component of the derivative that is perpen-

dicular to the surface. 

We need the following projection operator. 

Definition NN 

Let    ( )     be a surface. Then, for every    , the operator      
      is given by 

  ( )    ( ̂   ) ̂       

where  ̂ is the standard unit normal of   at  . 

 

Proposition NN 

Fix some    , and consider the operator   . For all         and    , 

(1)         ( )   ,  

(2)   (   )
    ( )   , 

(3)   ( )     , 

(4)   (  (  ))    ( )  (idempotence), 

(5) {
  ( +  

 )    ( ) +   ( 
 )

  (  )     ( )
 (linearity), and 

(6)    is a projection. 

Proof 

(1) If       then      +     for some numbers   and  . Thus  ̂    (
     

|     |
)  

(   +    )    and so   ( )    ( ̂   ) ̂       . 

(2) If   (   )
  then     ̂ for some number  . Thus   ( )    ̂  ( ̂    ̂) ̂    ̂  

  ̂   . 

(3)   ( )   ̂  (  ( ̂   ) ̂)   ̂     ̂  ( ̂   ) ̂   ̂     ̂   ̂     . Thus 

  ( )      because     (   )
     and (   )

      { ̂}. 

(4) Since   ( )      for all      and   ( )    for every      , it follows that 

  (  (  ))    ( ) for all     . 

(5)   ( +  
 )  ( +   )  ( ̂  ( +   ))  ̂    ( ̂   ) ̂ +    ( ̂    ) ̂    ( ) +

  ( 
 ) while   (  )     ( ̂    ) ̂   (  ( ̂   ) ̂)     ( )  

(6) By definition, a projection is an idempotent linear operator. ∎ 
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Definition NN 

Let    ( )   ( ( )) be a curve on a surface    ( ), and let        be a function that 

assigns a  -surface-tangential vector to every point on  , that is,  ( )     ( ) for every    . 

[For instance,   might be the velocity vector  ̇.] Then  ̇( )  
 

  
 ( ) is the usual rate of change of 

 ( ) with respect to  , and 

  

  
   ( )( ̇( ))  

is called the covariant derivative of   along the f-curve   at time   . 

Although  ( )     ( ) for every    , the usual derivative  ̇( ) need not be  -surface-

tangential. However, the covariant derivative is by Lemma NN(3). We prove the linearity and 

Leibniz properties of    ⁄ : 

Proposition NN 

Let    ( )   ( ( )) be a curve on a surface    ( ) and let   and         be two func-

tions that assign  -surface-trangential vectors to every point on  . Then, for any constant scalars 

     , the function   +         , defined by (  +    )( )    ( ) +    ( ) for all     

is also a function that assigns a  -surface-tangential vector to every point on  , and 

 (  +    )

  
  

  

  
+  

   

  
  

If, in addition,       then         defined by (  )( )   ( ) ( ) for all     is also a func-

tion that assigns a  -surface-tangential vector to every point on  , and 

 (  )

  
 
  

  
  +  

  

  
  

Proof 

For any    ,  ( )     ( ) and   ( )     ( ). But since    ( ) is a vector space, (  +

   )( )    ( ) +    ( )     ( ), too. Furthermore, 

 (  +    )

  
   ( ) (

 

  
[  ( ) +    ( )])    ( )(  ̇( ) +   ̇

 ( ))  

    ( )( ̇( )) +    ( )( ̇
 ( ))   

  

  
+  

   

  
 

using Lemma NN(5). If       then obviously         and (  )( )     ( ) for every    , 

and 

 (  )

  
   ( ) (

 

  
( ( ) ( )))    ( ) (

  

  
 +  

  

  
)  

  

  
  ( )( ) +    ( ) (

  

  
)  

 
  

  
  +  

  

  
 

since  ( )     ( ). ∎ 
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Example NN 

You are walking eastwards along the equator of the Earth with constant speed. Assume that the 

Earth is the image    ( )     of 

   (
         
         
     

) 

and your trajectory    ( ( )) is given by 

 ( )  (
 

 
  )     

that is, you are at 

 ( )   ( ( ))   (
     
     
 

)       

at time  . Considered as a space curve, your velocity vector is clearly 

 ̇( )   (
      
     
 

) 

which is nonconstant. Indeed, the acceleration 

 ̈( )   (
      
      
 

)     ̂  

where  ̂ is the Earth’s standard unit normal at the current position, is utterly nonzero and point-

ing towards the origin. However, the covariant derivative of your velocity vector is 

  ̇

  
   ( ̈( ))   ̈( )  ( ̂   ̈( ))  ̂     ̂  ( ̂  (   ̂))  ̂     ̂  (  ) ̂     

Thus, the covariant derivative ‘works’! 

If it would happen that the ordinary derivative  ̇ of a vector defined along a curve on the surface 

is surface-tangential, then the covariant derivative     ⁄  is equal to the ordinary derivative, by 

Definition NN and Lemma NN(1). Thus, we might say that the covariant derivative removes the 

features of the ordinary derivative that are not visible to a (two-dimensional) person living on 

the surface, while retaining all other properties. 

4.3.7.1 The Christoffel Symbols 

We want to find an alternative expression for the covariant derivative. There are basically two 

reasons for this. First, the definition (↑) in its explicit form (↑) is not very convenient. Second, 

this alternate expression is easily generalizable to general manifolds (such as ‘surfaces’ that are 

not embedded in some higher-dimensional space (such as   ), in which case there is no ‘stand-
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ard unit normal’ field  ̂ at all), as we will see in the next chapter. We will base our alternative 

expression on the so-called Christoffel symbols of the f-surface. 

Let        be an f-surface with image    ( ) and coordinates (   )   . Then    and    are 

vector fields on  . Of course, the usual derivatives    ,        , and     are not  -surface-

tangential, in general. We might consider the corresponding covariant derivatives, instead. Since, 

at any point    , the vectors   ,    and  ̂ form a basis, we may write 

       
   +    

2   +   ̂ 

      2
   +   2

2   +  ̂ 

     22
   +  22

2   +   ̂ 

for some scalar fields    
 ,    

2 ,  ,   2
 ,   2

2 ,  ,  22
 ,  22

2 , and   on  . Now, multiply these three equa-

tions by  ̂ (using the inner product on   ). This yields 

     ̂         ̂         ̂     

Thus,    ,    , and    , where  ,  , and   are the coefficients of the second fundamen-

tal form of  . If you multiply the first equation in (↑) by    instead you obtain 

          
  +    

2    

But 

       
 

 
(      +       )  

 

 
 
 

  
(     )  

 

 
   

and so 

   
  +    

2   
 

 
    

Similarly, multiplication by    yields 

          
  +    

2   

where 

             +               
 

  
(     )  

 

 
(      +       )  

 
 

  
(     )  

 

 

 

  
(     )     

 

 
    

Thus 

   
  +    

2      
 

 
   

and you can easily solve for the  ’s in terms of the coefficients of the first fundamental form. Pro-

ceeding in the same manner with the two remaining equations in (↑) we end up with 

Proposition NN 

Let        be an f-surface with coordinates (   )   . Then 

       
   +    

2   +   ̂ 

      2
   +   2

2   +  ̂ 

     22
   +  22

2   +  ̂ 
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where 

   
  

        +    
 (    2)

    
2  

            
 (    2)

   2
  

       
 (    2)

 

  2
2  

       
 (    2)

  22
  

            
 (    2)

 

 22
2  

        +    
 (    2)

 

where  ,  , and   are the coefficients of the first fundamental form of   and  ,  , and   are the 

coefficients of the second fundamental form. 

 

Definition NN 

The symbols with base ‘ ’ in Proposition NN are called the Christoffel symbols of  , and are often 

written in the following matrix form: 

   (
   
   2

 

 2 
  22

 )   2  (
   
2   2

2

 2 
2  22

2 ) 

where  2 
    2

  and  2 
2    2

2 . 

Notice in particular that the Christoffel symbols of an f-surface are completely determined by the 

first fundamental form of the f-surface. 

4.3.7.2 The Covariant Derivatives of the Parameter Curve Tangent Vectors 

Notice also that the above result immediately gives the covariant derivatives of    and    along 

the parameter curves of the f-surface. Indeed, such an f-curve 

      

is either given by 

 ( )  ( ( )  ( ))  (    ) 

for some fixed      or by 

 ( )  ( ( )  ( ))  (    ) 

for some fixed     . Without loss of generality, we will investigate only the former in detail 

(the analysis of the latter case is, of course, completely analogous). Then the corresponding f-

curve 

          

on the actual surface    ( ) is 

 ( )   ( ( ))   (    ) 

and, at every point    , we have a vector 

  ( )    ( ( ))  
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Thus, we might very well compute the covariant derivative of   ( ) since it is a surface-

tangential vector given along a curve with parameter    . In fact, 

   
  

   ( )(   )    ( )(   
   +    

2   +   ̂)     
   +    

2     

If we instead had considered the rate of change of    along an f-curve  ( )  (    ), we would 

have found 

   
  
   ( )(   )    ( )( 22

   +  22
2   +  ̂)   22

   +  22
2     

Of course, we can also consider the rate of change of    along an f-curve  ( )  (    ): 

   
  
   ( )(   )    ( )(  2

   +   2
2   +  ̂)    2

   +   2
2     

Finally, since        , 

   
  

 
   
  
  

4.3.7.3 Vector Fields on a Surface 

Definition NN 

Consider a surface    ( )    . A function        is called a vector field on   iff 

 (   )     (   ) for all (   )   . 

Below a vector field on a part of a sphere is shown. 

 

Figure 45. A vector field on a part of a sphere. 
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A general vector field on a surface   may be written 

 (   )   (   )  (   ) +  (   )  (   ) 

which is automatically a field on   since    and    span     at every point    (   )   . Now, 

consider any curve    ( )   ( ( ))   , and consider, in particular, the covariant derivative 

of   along the curve. [That is, we consider the function  ( )   ( ( )).] This is 

  

  
 
 

  
(   +    )  

  

  
  +  

   
  
+
  

  
  +  

   
  
  

If, in particular, the curve is a parameter curve with parameter  , then 

  

  
 
  

  
  +  

   
  
+
  

  
  +  

   
  
 
  

  
  +  (   

   +    
2   ) +

  

  
  +  (  2

   +   2
2   )  

 (
  

  
+     

 +    2
 )   + (

  

  
+     

2 +    2
2 )     

Similarly, we find 

  

  
 
  

  
  +  

   
  
+
  

  
  +  

   
  
 
  

  
  +  (  2

   +   2
2   ) +

  

  
  +  ( 22

   +  22
2   )  

 (
  

  
+    2

 +   22
 )   + (

  

  
+    2

2 +   22
2 )     

4.3.7.4 A ‘Directional’ Derivative 

So far we have only considered the covariant derivative of a vector defined along a curve. In this 

section, we will introduce the rather immediate generalisation to the covariant derivative of a 

vector field on the (entire) surface in the direction of another vector. More precisely, 

Definition NN 

Let    ( ) be a surface with parameters (   )    and let        be a vector field on  . Fix 

some point    ( )    and let     be a tangent vector in the parameter plane. Then the co-

variant derivative of   with respect to     at     is the vector 

    
   

  
 

where the covariant derivative      ⁄  is evaluated along an f-curve           passing 

through    ( ) such that the parameter plane tangent vector  ̇    at   and where the re-

striction   ( )   ( ( )) of   to  ( ) assigns a  -surface-tangent vector to each point on 

   ( ( )). 

(Notice that        while         is defined by       .) Thus, 

    
   

  
   ( ̇

 ( ))   ̇  ( ̂   ̇ ) ̂ 

where 

 ̇ ( )  
 

  
( ( ( )))   ̇( ( ))   ̇( )   ̇    

where, of course,  ̇ is a     Jacobian matrix. Therefore, 
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     ̇    ( ̂  ( ̇   ))  ̂ 

The last formula shows that the covariant derivative     is well-defined, that is, independent of 

the particular choice of f-curve   mentioned in the definition; you only need its tangent vector   

at the point   of evaluation. 

Lemma NN 

Let    ( ) be a surface with parameters (   )    and let        be a vector field on  . Fix 

a point    ( ) and let   (   )   . Then 

     
  

  
+  

  

  
  

where, as indicated,    ⁄  and    ⁄  are covariant derivatives along parameter curves with vary-

ing   and  , respectively. 

Proof 

Let    ( )   ( ( )) be a curve on   with parameter-plane tangent  ̇( )    at  ( )   . Then, 

by definition, 

    
   

  
   ( ) (

   

  
)    ( ) (

 

  
( ( ( ))))    ( ) ( ̇( ( ))   ̇( ))    ( )( ̇( ( ))   )  

   ( )(   +    )     ( )(  ) +    ( )(  )   
  

  
+  

  

  
 

at  , where             as usual. ∎ 

Putting things together, we finally end up with 

Theorem NN 

Let    ( ) be a surface with parameters (   )    and let        be a vector field on  . If 

 (   )   (   )  +  (   )   and   (   )    then 

    ( 
  

  
+      

 +     2
 +  

  

  
+     2

 +    22
 )   +

+ ( 
  

  
+      

2 +     2
2 +  

  

  
+     2

2 +    22
2 )     

Proof 

Combining Proposition NN and the results of Section NN, we find 

      
  

  
+  

  

  
 

  ((
  

  
+     

 +    2
 )   + (

  

  
+     

2 +    2
2 )   ) +

+  ((
  

  
+   2 

 +   22
 )   + (

  

  
+   2 

2 +   22
2 )   ) 

which simplifies to the desired result. ∎ 
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4.3.7.5 The Significance of the Result 

The reader might wonder why we have spent so much effort in deriving such a seemingly horrid 

result as the one of Theorem NN. The point of Theorem NN is that it gives the covariant deriva-

tive of a vector field on a surface (and, in any given direction), without the need to know any-

thing about the particular embedding of the surface in   . Indeed, you only need to know a co-

ordinate system on the surface, and its first fundamental form. This gives you the Christoffel 

symbols     , and then you specify your vector field in terms of the basis  and  at any point, and 

you specify your direction in terms of the parameter plane alone. This approach will be crucial in 

the next chapter where we consider manifolds (such as surfaces) that are not (explicitly) em-

bedded in some higher-dimensional space. In that chapter, we will also reformulate much of our 

theory in terms of tensors, and then the result (↑) will look much simpler thanks to tensor nota-

tion and a notational device due to Einstein. 

4.3.8 The Covariant Derivative, Parallel Transport, and Geodesics 

In this final section of this chapter, we will use the concept of the covariant derivative to define 

the concept of parallel transport and we will also find a new approach to the study of surface 

geodesics. 

4.3.8.1 Parallel Transport 

In   , the tangent space    
  at      is a copy of    with at      and with the same geo-

metric basis vectors, as exemplified below in the case of    , where the radius vector of   is 

shown in orange: 

 

Figure 46. Every tangent space of    is a copy of    with the same basis vectors. 

Since for every     , the tangent space    
    , you seldom talk explicitly about tangent 

spaces of   . Indeed, we have had an entire chapter on classical mechanics without even men-

tioning it, although, for instance, the velocity vector of a particle at     , strictly speaking, is a 

vector      
  in the tangent space of    at  . If such a particle is moving with constant velocity, 

then we associate a velocity vector    to each tangent space    
 , and all these vectors are, geo-

metrically, the same, and they also have the same components in each tangent space. Thus we 

say that the vector      for some initial      is parallel propagated (or transported). More 

generally, if there is an assignment of a vector      
  to each point     of a curve      

such that the components of   are the same in every tangent space, then   is said to be parallel 

propagated (or transported) along  , as exemplified below. 

 2 

𝑇 𝒙
2 

𝒙 
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Figure 47. A vector is parallel propagated along a curve in   . 

Consider now a (manifold) surface     . What should we mean by a vector being parallel 

propagated along a curve    ? Clearly, since     ,      and we could simply mean the 

usual thing considering the vector as a vector in    and the curve as a curve in   . However, we 

want to find a concept that is meaningful for a two-dimensional being living inside the surface, 

not being aware of the ambient space. For example, consider your flagpole-related paradox, and 

your intense argument with Buggy. According to Buggy, the flagpole (your velocity vector, re-

member?) is certainly not parallel propagated when you stroll along the equator, even though, to 

you, it appears to be. It thus makes sense to make 

Definition NN 

Let    ( )   ( ( )), where   [   ] be a curve on a surface    ( ). Let        where 

 ( )     ( ) for every    . Then the vector  ( ) is parallel propagated (or transported) along 

  iff     ⁄   . 

Consider Example NN again, where you are walking along the equator. Since   ̇   ⁄   , the 

flagpole (your tangent vector) is parallel propagated along the equator. 

4.3.8.2 Geodesics 

The concept of parallel propagation is defined for every surface-tangential vector defined along 

a curve on the surface. Nevertheless, it is of particular interest when the vector is the velocity (or 

tangent) vector of the curve. 

Indeed, we have (which shouldn’t be a major surprise to the reader) 

Theorem NN 

A unit-speed curve on a surface is a geodesic if and only if its tangent vector is parallel propagat-

ed along the curve. 

Proof 

Let    ( )   ( ( )) be a curve on a surface    ( ), where   is unit-speed. Then the covari-

ant derivative of the tangent vector is 
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  ̇

  
   ( )( ̈)    ( )(   ̂ +    ̂   ̇)    ( )(   ̂) +   ( )(   ̂   ̇)    ( )(   ̂   ̇)  

     ( )( ̂   ̇)  

But  ̂     ̇   , and  ̂   ̇. Therefore,  ̂   ̇   . In addition, ( ̂   ̇)   ̂, and so  ̂   ̇  

   ( ). Thus,   ( )( ̂   ̇)   . Therefore, 

  ̇

  
         

that is, the tangent vector  ̇ is parallel propagated along the curve if and only if the curve is a 

geodesic. ∎ 
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5 Manifolds and Tensors 

This chapter is devoted to the introduction of the modern language of differential geometry. We 

will begin with a (fairly) simple introduction to tensors; following that, we will introduce the 

manifold, and, finally, we will introduce the concept of tensor fields on manifolds. 

 

 

 

 

Figure 48. A curve on a surface, with a tangent vector on it. 
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5.1 Tensors 

General relativity (among other fields of physics) is based on tensor algebra and tensor analysis; 

unfortunately, this field of mathematics is very often introduced inadequately in introductory 

text on (and even courses in) relativity theory. The reason, I believe, is twofold. For one thing, 

tensor calculus is not the simplest branch of mathematics there is. In particular, there are many 

(seemingly different) approaches to tensor analysis in different fields of mathematics and phys-

ics. The notation used in tensor analysis is also rather ‘intricate’, and notational conventions 

(that appears to be unrigorous52) are used everywhere. However, I do believe that the major 

problem lies in the failure to recognize that one first has to study mathematics, before one can 

study physics. Indeed, many (probably even ‘most’) introductory texts on general relativity as-

sumes no previous knowledge of tensor analysis, and introduces the concepts on the fly, or in a 

far too brief chapter that completely lacks any mathematical insight into the subject. 

It is in order to remedy this problem, that the last chapter was devoted entirely to the classical 

differential geometry of curves and surfaces in Euclidean   , and that this chapter is devoted to 

the concepts of modern differential geometry of manifolds, using tensor notation. 

5.1.1 Some Concepts from Linear Algebra 

We will review some basic concepts from linear algebra that are essential for our development 

of tensor algebra. In this entire chapter, we write simply ‘vector space’ to denote a finite-

dimensional vector space over the real numbers; in addition, since every real  -dimensional vec-

tor space with a prescribed basis is isomorphic to   , you can (almost) always think of this 

space. 

5.1.1.1 Multilinear Maps 

Let   be a vector space. A real-valued function       is said to be linear iff 

 (    +  2 2)     (  ) +  2 ( 2) 

for all    and  2    and all    and  2   . A real-valued function 

       ⏟      
         

   

is called multilinear iff, for every        , the function        is linear where   ( )  

 (     ), where     is the  th argument of  , and the other arguments of   are arbitrary 

fixed elements of  . In particular, if    ,   is said to be bilinear. More generally, a real-valued 

function       2        , where each    is a vector space, is said to be multilinear (or 

bilinear if    ) iff for every         the function         defined by   ( )   (     ), 

with the      at the  th argument, is linear (while all other arguments are arbitrary and fixed). 

5.1.1.2 The Inner Product 

Proposition NN 

Let ⟨   ⟩ be an inner product on a vector space   of dimension  . Then, given a basis         of 

 , there exists a symmetric, positive-definite,     matrix   such that 

⟨   ⟩               

                                                             
52 For instance, is    a vector or a single component of a vector (that is, a number)? Is     a multilinear 
map (that is, a function), a matrix, or a single number? In what sense is     the ‘inverse’ of    ? 
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In fact,     ⟨     ⟩. Conversely, every symmetric, positive-definite,     matrix   induces an 

inner product, that is, the function ⟨   ⟩       defined by 

⟨   ⟩       

satisfies the axioms of an inner product. 

Proof 

Let   (    2     ) and   (    2     ). Then, by the axioms of an inner product, 

⟨   ⟩  ⟨    +  2 2 + +          +  2 2 + +     ⟩  

 ∑  ⟨       +  2 2 + +     ⟩

 

   

 ∑(  ∑  ⟨     ⟩

 

   

)

 

   

      

where the (   )th element of the     matrix   is ⟨     ⟩. Since ⟨     ⟩  ⟨     ⟩,   is symmetric. 

In addition, since ⟨   ⟩    with equality iff    , the matrix   is positive definite. Conversely, if 

⟨   ⟩       where   is a symmetric, positive-definite     matrix, it is easy to see that the 

function ⟨   ⟩       satisfies the axioms of an inner product. ∎ 

In elementary linear algebra one almost exclusively work with an orthonormal basis, in which 

case   is the unit matrix; that is, ⟨     ⟩  [   ] where [ ] is the Iverson bracket. 

5.1.1.3 Linear Functionals 

A functional on   is a function      . Let   and   be linear functionals on  . Then 

( +  )     defined by ( +  )( )   ( ) +  ( )      is also a linear functional on  , as 

is, for every scalar    , the function        defined by (  )( )    ( )     . There-

fore, the set of all linear functionals on   is also a vector space, called the dual space of  , denot-

ed   . An element      is called a covector. 

Given a basis   , …,    of  , there is a natural basis of   , called the dual basis, consisting of the 

covectors   , …,    defined by 

  ( )    (    + +     )           

that is,    reads off the  th component of its argument vector. We remark that an equivalent 

definition is 

  (  )  [   ]  

Proposition NN 

The covectors   , …,    defined above constitute a basis of   . 

Proof 

Let      be any covector. Then, by linearity, its image on       + +        is 

 ( )   (    + +     )     (  ) +  +    (  )  

On the other hand, we want to find unique scalars   , …,    such that 

      + +       

that is, such that 
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 ( )      ( ) +  +     ( )      + +       

for all    . The only possibility is then 

    (  )       (  )  

Thus, every covector   can be written in the form (↑) for a unique sequence of coefficients (↑), 

and so   , …,    is a basis of   . ∎ 

5.1.2 The Definition of a Tensor 

Definition NN 

Let   be a vector space. Then a covariant tensor of rank      is a multilinear map 

       ⏟      
         

  . 

A contravariant tensor of rank      is a multilinear map          ⏟        
         

  . 

A multilinear map          ⏟        
         

      ⏟      
         

   is called a tensor of type (   ), where       

and the rank of   is  +     . The tensor is mixed if both   and    . 

Notice that, 

 a tensor of type (   ) is a covariant tensor of rank  , 

 a tensor of type (   ) is a contravariant tensor of rank  , and 

 any tensor is either covariant, contravariant, or mixed. 

In addition, 

 a vector ‘is’ a contravariant tensor of rank   (as we will see shortly), and 

 a covector is a covariant tensor of rank   (as is obvious). 

Most importantly, 

 the image of a tensor does not depend upon the choice of basis in  . 

The last part means that the image of the tensor is the same number when computed using every 

basis. It is also convenient to define a tensor of type (   ) (and rank  ) to be simply a number 

(an element of  , to be precise). Such a number is also called a scalar, and is independent of ba-

sis. 

Let us consider a few examples of tensors that we already know of. First of all, if there is an inner 

product on  , then the inner product is a covariant tensor of rank  . Indeed, the function 

        defined by 

 (   )  ⟨   ⟩ 

is certainly bilinear. If we fix some    , then the function       defined by 

 ( )  ⟨   ⟩ 

is a covariant tensor of rank 1, that is, a covector:     . Thus, any vector induces a covariant 

tensor of rank  . Similarly, given a basis, any square matrix   induces a covariant tensor of rank 

  by its quadratic form; that is,         where 
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 (   )        

(If   is also symmetric and positive definite, this is actually an inner product.) In the previous 

chapter we defined the first and second fundamental forms, ℱ and  , that both induce covari-

ant tensors of rank 2. Both ℱ and   are symmetric by construction, but ℱ is also positive-

definite, and so the tensor it induces is in fact an inner product. 

Notice also that every vector     induces a contravariant tensor of rank  , namely, 

 ( )   ( ) for every     , that is,   lets a covector act on it. It is easy to see that   is linear. In 

fact, the ‘pairing operation’          defined by  (   )   ( ) for all      and     is 

itself a mixed tensor of type (   ). 

Finally, a linear transformation       naturally induces a mixed tensor          of type 

(   ) by 

 (   )   ( ( ))  

5.1.3 The Components of a Tensor 

If we have chosen a basis for  , then a tensor of any type can be described by its (finite number 

of) components, in much the same way as a linear transformation can be described by its compo-

nents (that is, by its matrix). Of course, in both cases, this is an immediate effect of the severe 

restriction that the function is linear. 

5.1.3.1 The Components of a Covector 

Consider first a covector, that is, a covariant tensor   of rank  . Its image on the vector 

      +      is 

 ( )   (    + +     )     (  ) +  +    (  )  

But the numbers  (  ), …,  (  ), which we denote   , …,   , do not depend upon the argument  , 

and are called the components of   with respect to the basis   , …,   . As we saw in the proof of 

Proposition NN, the components defined this way are also the coordinates of the covector   con-

sidered a member of    relative the dual basis   , …,   ; indeed, 

      + +  2          

It is common to represent a vector as a column matrix of its components and a covector as a row 

matrix of its components (given a particular basis, of course): 

  (

  
 
  
) 

  ( (  )   (  ))  (     )  

Then the image 

 ( )      (     )  (

  
 
  
) 

can be represented as a simple matrix multiplication of the covector   and the vector  , both 

being regarded as matrices. 
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5.1.3.2 The Components of a Vector 

A contravariant tensor of rank 1 is, by definition, a linear map       . As we have seen, every 

vector     induces such a map by letting a covector act on it, that is, by 

 ( )   ( )        

If 

      + +      

and 

      + +      

then, by linearity, 

 ( )   ( )   (    + +     )     (  ) +  +    (  )      + +       

The numbers   , …,    do not depend upon the covector   and are called the components of the 

contravariant tensor   of rank   induced by  . But they are also the components of the vector 

   . This is the reason why vectors are considered contravariant tensors of rank  . We can 

write 

 ( )   ( )      (     )  (

  
 
  
) 

as usual for the ‘marriage’ between a covector and a vector. 

5.1.3.3 The Components of an Arbitrary Tensor 

Finally, consider an arbitrary tensor   of type (   ), acting on the   covectors       + +

    ,       + +     , …, and the   vectors       + +     ,       + +     , …. 

By linearity, 

 (           )  ∑   (          )

 

   

 ∑  ∑   (           )

 

   

 

   

   

 ∑            (               )

 

       
       

  

The      numbers  (               ), which clearly depend only on the tensor   and the ba-

sis vectors   , …,    of   (and the dual basis vectors), are called the components of the tensor   

relative to the basis   , …,    (and the dual basis). Thus, these      numbers completely specify 

the tensor (given a particular basis). 

For example, consider      and a tensor   of rank 2. Given a basis in   ,   is uniquely deter-

mined by its  2    components, white can be displayed in a matrix. It should be clear that a 

tensor of rank   requires a  -dimensional table (or ‘array’) of numbers in order to specify all its 

components (relative to a basis). 

5.1.3.4 The Linear Transformation is a Tensor 

We have seen how a linear transformation       naturally induces a mixed tensor 

         by  (   )   ( ( )). By definition, the components of   are 
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 (     )    ( (  ))       

where    , apparently, is the  th component of the image of the  th basis vector. But these are 

also the components of the matrix of  ! Thus, in this sense, not only does a linear transformation 

induce a tensor of type (   ), but a linear transformation is such a tensor. 

5.1.3.5 The Concrete Index Notation 

If   is a tensor of any type, then given a basis, it is customary and very convenient to denote the 

specific component  (               ) by 

    
   

  (               )  

By ‘specific’, we mean that the indices             are in fact placeholders for actual numbers. 

(That remark was probably annoyingly obvious to a reader with no previous knowledge of ten-

sor analysis!) In particular, if   is a vector, its components will be written   . For example, the 

vector      +   2 +     has components 

      2         

and may be written53 

      +  
2 2 +  

     

On the other hand, if      +   2 +     is a covector, then its components are written 

      2         

and the covector itself may be written 

     
 +  2 

2 +    
  

where you notice that we have moved the indices on the dual basis vectors from the bottom to 

the top. The (immediate) reason for this is that we may then employ the Einstein summation 

convention. Consider a general vector   and a general covector  . Then 

  ∑    

 

   

                ∑   
 

 

   

  

The Einstein summation convention allows us to omit the summation signs in these expressions, 

and write simply 

                          
   

The general formulation of the Einstein summation convention is given below. 

Einstein’s Summation Convention 

Every time there is a repeated index (a letter), once in superscript and once in subscript, in a sin-

gle term, then summation over all possible index values with the term as summand is implied. 

From now on, we will employ the summation convention, and we will not always make an ex-

plicit remark about it! That means, that if you are new to tensor analysis, you might want to read 

the box above, make yourself a cup of coffee, then read the box again, then go to bed and fall 

                                                             
53 Before we have always used subscripts for vector indices, but from now on, we will use superscripts to 
distinguish vector components from covector components. 
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asleep, then wake up, then read the box again, then take the dog for a walk, and then read the 

box again. After that, you are less likely to forget the convention. 

In particular, if        is a vector and      
  is a covector, we may write the pairing simply 

as 

 ( )     
   

More generally, if   is a tensor of type (   ), then its image is (cf. Eq. NN) 

 (           )  ∑       
        

   

 

       
       

     
   
      

      

5.1.3.5.1 The Order of Arguments 

We should note that a multilinear function of vectors and covectors is a tensor even if the argu-

ments are not ordered in such a way that every covector slot precede every vector slot. For ex-

ample, of course 

            

is a tensor if it is multilinear. But 

            

is also a tensor, if it is multilinear. Since we want to allow tensors with any ordering of the argu-

ments, we will sometimes denote the components of the tensor in such a way that there is exact-

ly one index, superscript or subscript, at every index column, and the index at the  th column 

corresponds to the  th argument of the tensor. For example, when a clear distinction is required, 

the components of   will not be written 

  
    

but rather 

   
    

from which it is clear, for instance, that the vector argument is the second argument of  . In addi-

tion, we need to make another remark about the order of arguments. To this end, consider, for 

simplicity, a tensor   of type (   ). Its image on the vectors   and     is  (   ). Now, define 

        by  (   )   (   ) for all      . Clearly,   is also a tensor of type (   ). The 

components of   are 

     (     ) 

while the components of   are 

     (     )   (     )      

where the  ’s are the definition of the components of a tensor. The subscripts   and   in (↑) and 

(↑) are the same; for example,   2   2 . 

5.1.4 Tensorial Operations 

5.1.4.1 Tensor Addition 

It is natural to make 
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Definition NN 

Let   and   be two tensors of the same type (   ). Then the tensor sum of   and   is the tensor 

 +   of type (   ) defined by 

( +  )(               )   (               ) +  (               ) 

where the   ’s are arbitrary covectors and the   ’s are arbitrary vectors. 

It is trivial to see that  +   actually is a tensor, and that  +    +  . We want to express the 

components of    +   in terms of the components of   and   (given a basis, of course). This 

is easy, for 

    
   

  (               )   ( 
              ) +  ( 

              )      
   

+    
   

 

where the first and the last   is the definition of the component symbol, and the middle   is the 

definition of the tensor sum. 

5.1.4.2 Multiplication by a Scalar 

It is also natural to make 

Definition NN 

Let   be a tensor of type (   ), and let     be any number. Then    is the tensor of type (   ) 

defined by 

(  )(               )    (               ) 

where the   ’s are arbitrary covectors and the   ’s are arbitrary vectors. 

Almost needless to say, the components of      are those of   multiplied by  , for 

    
   

  (               )    ( 
              )       

   
  

We remark that we have now shown that the tensors of any specific type (   ) form a vector 

space over the real numbers, under the operations of tensor addition and multiplication by a 

scalar. (Of course, one has to check the rest of the vector space axioms, but they are trivial.) 

5.1.4.3 Tensor Multiplication 

The definition of the tensor product is very simple. 

Definition NN 

Let   and   be two tensors of types (     ) and (     ), respectively. Then the tensor product of 

  and   is the tensor     of type (  +      +   ) defined by 

(   )(                                   )  

  (                 )   (                             ) 

where the   ’s are arbitrary covectors and the   ’s are arbitrary vectors. 

Given a basis of  , we want to find the components of       in terms of the components of 

  and  . This is very easy. Indeed, 
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  (                   )   ( 
        )   ( 

        )      
   
    
   

 

where the first and the last   is the definition of the component symbol, and the middle   is the 

definition of the tensor product. (We also pretend that there is no lack of letters.) That is, the 

components of     are the products of the components of   and  , in the sense above. 

A tensor   of type (   ) is said to be simple if there is a number    ,   vectors  ,  , …, and   

covectors       such that 

    (           )  

Proposition NN 

Let         be a basis for  , and let         be the dual basis. Then the      simple tensors 

           
         

where    [    ]    [    ] and    [    ]    [    ] form a basis for the vector space of 

(   )-tensors over  . In addition, the components of a tensor   are also the coordinates of   in 

this vector space and given this basis. 

Proof 

Let   be any tensor of type (   ) and let 

      
       (                     ) 

be its components. Then the image54 

 (           )        
             

       

We want to find      unique scalars       
      such that 

        
     (           

        )  

that is, such that the image 

 (           )        
     (   ( )    ( ) 

  ( )    ( ) )        
     (        

      ) 

for all covectors       and vectors      . The only possibility then is that 

      
            

       

thus, every tensor   can be written as a linear combination of the proposed basis vectors in a 

unique way, and the statement follows. ∎ 

5.1.4.4 Tensor Contraction 

A tensorial operation that, at first sight, is less obvious is that of contraction, a unary tensorial 

operation. For one thing, contraction is only defined for mixed tensors. 

                                                             
54 The author is perfectly aware of the fact that there are not infinitely many letters between ’f’ and ’g’ in 
the English alphabet, and not between ‘u’ and ‘v’ either. However, the notation is bloated as it is, and so it 
is not particularly tempting to make it even more bloated by writing the covectors     2   and their com-
ponents (  )  (  )2   and so on. 
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Definition NN 

Let   be any mixed tensor of type (   ), and let          be a basis for  , and let         be the 

dual basis. The contraction of   with respect to the  th covector slot and the  th vector slot 

(  [    ],   [    ]) is the tensor 

∑ (      
 ⏟
 

             ⏟
 

     )

 

   

 

of type (       ). 

For example, if   is a tensor of type (   ), then the contraction with respect to the second covec-

tor slot and the second vector slot is the (   )-tensor with image 

  (     )  ∑ (           )

 

   

             

As usual, we are interested in the components of the resulting tensor. In the example above, 

   
   
( )
  (        )  

( )
∑ (              )

 

   

 
( )
∑    

  

 

   

 
( )
    
  

 

where (1) is the definition of the components of a tensor, (2) is the definition of the contraction 

  , and (3) is the Einstein convention. Thus, if we have a tensor with components 

    
    

then the components of the contraction w.r.t. the indices   and   are 

    
  
  

It should be clear that, in general, one obtains the components of a contracted tensor by starting 

with the components of the original tensor, and then setting the contracted indices equal (there-

by transforming the indices into dummy indices of an implied summation). This results in a ten-

sor with one less upper index and one less lower index. 

Notice that, in the case of a linear transformation   with components   
 , the only possible con-

traction is the trace   
     , a scalar. Thus, the operation of contraction generalises that of 

taking the trace of a linear transformation. 

From Definition NN it looks like the contraction of a tensor depends upon the basis         you 

use to compute the contraction. In other words, it looks like you get different tensors in different 

bases. This is not the case, however. You know this in the special case of the trace of a linear 

transformation, and we now prove it in the general case. 

Proposition NN 

The contraction of a tensor does not depend upon the basis         used to construct it. 

Proof 

TBW. 
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5.1.5 The Abstract Index Notation 

If   is a tensor of type (   ), then we have defined 

    
   

  (               ) 

as a general component of   with respect to the chosen basis (or bases, if you insist that the dual 

basis, which is determined by the basis of  , is a different basis). For example, if 

     +   2 +     

then     ,  2   , and      in the basis     2   . However, it is common to denote the ten-

sor itself by the formal symbol     
   

, where the indices are not substituted, or meant to be substi-

tuted, by actual numbers. For example, we may write 

  ( ) 

for the image of      under     . 

This convention is called the abstract index notation, since the indices are now only formal sym-

bols, telling us what type of tensor we are working with, and giving names to the different argu-

ments (or slots). There are several benefits of the abstract index notation. First, it reduces the 

‘load on the box of symbols’, or the ‘pollution of the namespace’. For example, if   is a vector and 

  is its induced covector [that is,  ( )  ⟨   ⟩ for all    ], then we can denote the vector   by 

   and the covector   by   . Another, rather obvious, benefit of the abstract index notation is 

that you can see immediately what type a tensor is. Indeed, if   is a tensor, we have no indication 

of its type whatsoever, but if we write it as   
  , then we see that it is of type (   ) and of rank 

 +    . Yet another reason is that the notation gives us a chance to give names to the different 

slots of the tensor. For instance, we will use     as the tensor     with its arguments swapped. 

From now on, we will employ the abstract index notation. However, when we actually are refer-

ring to concrete components relative to some specific basis, we will use Greek letters as indices; 

we reserve Latin letters for abstract indices. To make this very clear, I offer the following dia-

gram: 

 

Figure 49. The Abstract Index Notation explained. 
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We have seen that, if       is a tensor with components    , then the tensor   obtained from   

by swapping the order of the arguments has components    . In the abstract index notation, we 

can safely use the same letter for these two tensors. Indeed, we can certainly tell     apart from 

   . Formally, if there we introduce a tensor      
     and then start to talk about a tensor with two 

abstract indices swapped,      
     say, we mean the first tensor but with the corresponding argu-

ments swapped. 

A very nice feature of the abstract index notation is that it helps us not making mistakes. For 

example, it is obvious that we have made a mistake if we end up with        , since a contra-

variant tensor can never be the same thing as a covariant tensor; indeed, they live in different 

vector spaces. However, it is important to realise that it is perfectly valid to end up with a result 

like        , since each side is merely a number, and all numbers live in the same space 

(namely,  )! Perhaps       and      . Then, clearly,        . 

In the special case of a tensor of rank one or two, it is possible to arrange its components (given 

a particular basis) in a one-dimensional or two-dimensional array of numbers (respectively). For 

pure convenience, we will use the convention of denoting such a matrix by the Greek index vari-

ant of the tensor symbol. For example, 

   (
 
 
 
)  

by definition, has exactly the same meaning as 

      2          

Notice that, in this case, the   is not meant to be replaced by an actual number, even though it is 

a Greek index! Instead, the Greek superscript indicates what kind of tensor we are talking about, 

and that the symbol represents the components of the tensor in a particular basis. We will never 

write 

   (
 
 
 
)                                   

because    is a tensor (a contravariant vector, in this case), and we make a clear distinction be-

tween such a geometrical object and its components in any particular basis. Similarly, for a 

covector (and a prescribed dual basis), we may write 

   (   ) 

which has exactly the same meaning as 

      2          

Finally, for any tensor of rank 2 [of type (   ), (   ), or (   )], we may write its components in 

matrix notation. For example, 

    (
   
   
    

) 

has the exact same meaning as 
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        2           2     22     2          

  2            

Notice in particular that the symbol    
  now can be interpreted in two different ways, both of 

which are valid. Either we may consider 

   
  ∑   

 

 

   

    
 + +    

  

where each    and    is a number, or we might think of it as 

   
  (     )(

  

 
  
)     

 + +    
   

In either case, we end up with the same number, namely,    
   ( )   . 

5.1.5.1 The Basis Vectors are Vectors 

Be sure to notice that a single basis vector, like   , is a vector; more precisely, 

      + +    + +      

Hence, it has components 

(  )
  [   ] 

and is written 

(  )
  

in the abstract index notation. The same remark holds for the dual space basis vectors. 

5.1.6 Symmetries of Tensors 

Let     be a tensor of type (   ), as indicated. It might so happen that 

   (   )     (   )        

in which case     is said to be symmetric with respect to its indices   and  . It might also be the 

case that 

   (   )      (   )        

in which case     is said to be antisymmetric with respect to the same indices. In components, 

        

and 

         

in each case, respectively. To see this, simply employ the definition of the component of a tensor: 

       (     )     (     )      

and 

       (     )      (     )       

in the two cases, respectively. The concepts of symmetric and antisymmetric indices are also 

defined for arbitrary tensors, not just tensors of type (   ). The generalisation is rather obvious: 
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A tensor is symmetric (resp. antisymmetric) in two vector or covector slots if the image of the 

tensor is the same (resp. changes sign) if the arguments are swapped, for all possible arguments 

of the slots and for all values of the other arguments of the tensor. 

5.1.6.1 The Symmetric and Antisymmetric Parts of a Tensor 

Given a tensor     of type (   ), we define two new tensors  (  ) and  [  ] of the same type by 

 (  )(   )  
 

 
(   (   ) +    (   ))  

 
 

 
(   (   ) +    (   ))          

 [  ](   )  
 

 
(   (   )     (   ))  

 
 

 
(   (   )     (   ))  

these tensors are the symmetric and the antisymmetric part of    , respectively. The reason for 

this terminology is pretty obvious. Indeed, 

     (  ) +  [  ] 

and so  (  ) and  [  ] are ‘parts’ of    , and 

 (  )(   )   (  )(   )        

while 

 [  ](   )    [  ](   )         

that is,  (  ) is symmetric while  [  ] is antisymmetric. The components of the symmetric and 

antisymmetric parts look the way one might expect. The components of the symmetric part 

 (   ) are 

 

 
(   +    )   (  ) 

and the components of the antisymmetric part  [   ] are 

 

 
(       )   [  ]  

Notice that if it so happens that     is symmetric, then it is equal to its symmetric part: 

     (  )  [  ]     

If it so happens, instead, that     is antisymmetric, then 

     [  ]  (  )     

Naturally, we define the symmetric and antisymmetric parts of a contravariant tensor     anal-

ogously. Furthermore, in a tensor of higher rank than two, if a neighbouring pair of indices on the 

same vertical level are enclosed by parenthesis (or square brackets), we mean that we should 

compute the value of the tensor twice, using both orders of the two arguments corresponding to 

the indices inside parenthesis or brackets, and then sum (resp. subtract) half the obtained val-

ues. For example, 

   
 (  )  

 

 
(   
   +    

   )  
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More generally, if there are n arguments inside parentheses, we sum over every possible permu-

tation of the corresponding arguments. If the indices are in square brackets instead of parenthe-

ses, we do the same, but we also multiply every term by the sign of the corresponding permuta-

tion. In any case, we divide the result by   , the number of permutations. That is, 

 (          )  
 

  
∑    ( )   ( )     ( )
    

 

where    is the symmetric group on {       }, and 

 [          ]  
 

  
∑         ( )   ( )     ( )
    

 

where        {   + } is defined by 

     {
+             
             

        

We make the same definition for a contravariant tensor of rank  , and we also make the obvious 

generalisation to an arbitrary tensor: If, in a tensor of rank  , there are   of the indices inside 

parenthesis or square brackets (   ), we sum over all permutations of the corresponding ar-

guments, leaving the other arguments fixed. 

In some cases, not even this very general notation is enough. Say, for instance, that we have a 

tensor      and are interested in 

 

 
(    +     )  

In this case, we want to swap the two indices   and   while keeping   fixed, but unfortunately,   

and   are on opposite sides of  . To remedy this, we introduce a new device, and write 

 (  ̂ )  
 

 
(    +     ) 

where the hat (or ‘home’) ^ on   tells us that   is ‘at home’, and not going to move anywhere. Of 

course, this device is used not only for symmetric parts of covariant tensors of rank  , but on all 

tensors and both together with parentheses (symmetric parts) and square brackets (antisym-

metric parts). 

5.1.7 Transformation Properties of Tensor Components 

If   (     ) and   (     ) are two bases in  , then a tensor   on   will have dif-

ferent components in the two bases, just as a vector, or a linear transformation, has different 

components. We will review the terminology from elementary linear algebra before we ap-

proach the transformation of a general tensor using tensor notation. 

If we change from   to  , all information about the change of basis is encoded into the     

‘change-of-basis’ matrix   (with elements   
 
) defined by the formal matrix equality55 

                                                             
55 When we specify the elements of a matrix using index notation, then, the following rules apply: If the 
indices are on the same height (either superscript or subscript), then the left-most index is the row index 
and the right-most index is the column index. If not, the upper index is the row index while the lower in-
dex is the column index. For example, in each of the following symbols,   is the row index and   is the col-

umn index of the matrix:    ,    ,    
 ,   

 ,   
2 . (Beware that some authors employ a different convention.) 
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      (
  
    

 

   
  
    

 
)  

More rigorously put, the  th column of   consists of the coordinates of    expressed in the basis 

 . From elementary linear algebra, it is known that if a vector has components   (a column ma-

trix) and    in the old and the new basis, respectively, then 

         

In general tensor analysis, we are forced to abandon the matrix notation, and the reason is quite 

simple: It is no longer enough with one-dimensional arrays of numbers (‘vectors’) and two-

dimensional arrays of numbers (‘matrices’); we need  -dimensional arrays of numbers, and 

these are difficult to represent. Thus, for instance, instead of representing a set of  2 numbers as 

a matrix, we write out the numbers as components of a tensor by writing      ,   2   , etc. 

This is readily generalised to  -dimensional arrays of numbers, for example,       , 

   2   , etc. We will now rewrite the transformation laws of vectors and linear transfor-

mations in such notation, and we will also derive the transformation law of a general tensor of 

any type. 

5.1.7.1 The Transformation of a Vector 

Let us now switch to tensor notation. The transformation law (↑) of a vector    can clearly be 

written 

    (   ) 
     

5.1.7.2 The Transformation of a Covector 

Consider now a covector    with coordinates    and   
  in the old and the new bases, respective-

ly. The transformation law of a covector can be deduced from that of a vector. Indeed, for any 

vector   , with components    and    , respectively, the image 

   
    

      

But 

    (   ) 
    

and so 

   
    

 (   ) 
    

should hold for any vector   . If we rename the dummy (summation) indices, 

   
    

 (   ) 
 
   

and it is obvious that 

     
 (   ) 

 
  

But this is tensor notation for a usual matrix multiplication; indeed, the equation says 

(     )  (  
    

 )(
(   ) 

  (   ) 
 

   
(   ) 

  (   ) 
 
)  
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But then, since     is invertible, 

(     )(
  
    

 

   
  
    

 
)  (  

    
 ) 

or, reverting to tensor notation, 

  
 
     

  

or 

  
    

 
   

which is the sought transformation law of a covector. 

5.1.7.3 The Origin of the Words ‘Covariant’ and ‘Contravariant’ 

We will make a brief recess in our endeavour of deriving the transformation properties of a gen-

eral tensor and consider the etymologies of the words ‘covariant’ and ‘contravariant’. So far, we 

have found the transformation of both a vector and a covector. Let us find the ‘transformation 

law’56 of a basis vector. This is actually (↑), which we can write, in tensor notation, as 

       
 
  

or, if we let      
 , 

  
    

 
    

That is, the formal row matrix (     ) of basis vectors transform like the components of a 

single covector! (Be sure to see the difference.) Thus, a covector, or a covariant tensor of rank  , 

transforms in the ‘same way’ as the basis, and ‘co-‘ means, roughly, ‘together’. On the contrary, a 

vector, or a contravariant tensor of rank   transforms in the opposite way, and ‘contra-‘ means 

‘against’. This also motivates why we write the basis vectors like    with a downstairs index, just 

like we write covectors. 

In addition, formal array of dual basis vectors transforms like the components of a single vector, 

which motivates our writing their indices upstairs. 

5.1.7.4 The Transformation of a Linear Transformation 

The classical transformation law (↑) of a linear transformation   
  can be written 

  
   (   ) 

   
   
 

 

which therefore is the transformation law of a mixed tensor of type (   ). Strictly speaking, the 

above shows how the components of a linear transformation transforms, but recall that we in 

Section 5.1.3.4 showed that the components of a linear transformation are identical to those of 

the induced tensor of type (   ), and so our statement follows. 

5.1.7.5 The Transformation of a General Tensor 

Let      
     be a general tensor with components 

                                                             
56 The inverted commas are due to the fact that this ’law’ is in  fact a definition. Indeed, we defined our 
transformation from   to   by specifying the components of the new basis vectors in terms of the old ones. 



ANDREAS REJBRAND D R A F T  http://english.rejbrand.se 

 265/314 

     
    

  (                     ) 

relative to   and 

     
     

  (                     ) 

relative to  , where         is the corresponding dual space basis. Using the known transfor-

mations 

   (   ) 
         

 
    

we have, by linearity, 

     
     

  (                     )  

  ((   ) 
    (   ) 

 
   (   ) 

 
       

      
      

 
    )  

 (   ) 
  (   (   ) 

 
   (   ) 

 
       

      
      

 
    )    

 (   ) 
 (   ) 

 (   ) 
 
   

   
   
 
  (                     )  

 (   ) 
 (   ) 

 (   ) 
 
   

   
   
 
      

    
  

That is, 

     
     

 (   ) 
 (   ) 

 (   ) 
 
   

   
   
 
      

    
 

is the transformation law of the components of a general tensor. It is easily checked that the laws 

for a vector, covector, and a linear transformation are special cases of the general law. 

5.1.7.6 The Classical Definition of a Tensor (Almost) 

Many older books, and many contemporary physics texts, use the ‘coordinate approach’ to ten-

sors: they define a tensor, not as a real-valued multilinear function on a vector space, but simply 

as an array of numbers that transforms according to the laws above under a change of basis (al-

most). That is, they do (almost) 

Alternative Definition NN 

A contravariant tensor of rank   is a set of    numbers           (   [    ]) such that, under a 

change of basis described by the matrix  , they transform as 

(  )        (   )  
   (   )  

            

A covariant tensor of rank   is a set of    numbers          (   [    ]) such that, under a 

change of basis, they transform as 

        
     

      
            

A tensor of type (   ) and rank  +   is a set of      numbers         
        (      [    ]) such that, 

under a change of basis, they transform as 

(  )       
        (   )  

   (   )  
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where       and the tensor is said to be mixed if      . 

An ordinary vector is often called a contravariant vector, while a covector is called a covariant 

vector. (We will return to the meaning of ‘almost’ later on, in Section 5.3.1.6.) One then generally 

shows that a curve tangent vector is a contravariant tensor of rank  , and the reader might feel 

that the contravariant tensors are the most important kind of tensors, while the covariant ten-

sors are some kind of ‘technical pathology’. Indeed, everyone is familiar with vectors, but per-

haps not as familiar with covectors. From the modern viewpoint, however, it is perfectly clear 

that in many cases the covariant tensors are in fact the most important ones. For example, the 

first fundamental form is a covariant tensor. Indeed, irrespective of the approach chosen when 

you define the concept of a tensor, tensors are generally used as linear functionals. For example, 

even if you only consider tensors as arrays of numbers, a covariant tensor with components     

generally ‘acts’ on two vectors with components    and    to yield a number     
   . That is, 

even if you don’t use that exact phrasing, you are using the numbers as a linear functional! Now, 

if you consider vectors to be of more ‘important’ than covectors, it is ‘clear’ that covariant ten-

sors are more ‘important’ than contravariant tensors, because only the former accepts vectors as 

arguments. 

For future use, we end this section by giving 

Definition NN 

The Kronecker tensor is the tensor   
  with image 

 (   )   ( )     
             

We give some of the most important properties of   
 . 

Proposition NN 

(1)   
  is the tensor induced by the identity linear transformation. 

(2) In any basis,   
  [   ], which is known as the Kronecker delta symbol. 

(3)   
   
 
   

   

(4) (  )
    

 
  

Proof 

(1): If   is the identity linear transformation, then the tensor induced from   has image 

 (  )   ( ) since   is the identity matrix. (2):   
   (     )   

 (  )  [   ]. (3) is im-

mediate and (4) is (↑) written in disguise using (2). ∎ 

5.1.8 The Metric 

A general vector space has no inner product, but in this section we will see that if an inner prod-

uct has been prescribed, much more structure can be introduced when we consider tensors on 

the space. As shown in Section 5.1.1.2, an inner product in a vector space   can always be writ-

ten 
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⟨   ⟩      
    

for some non-degenerate, symmetric, and positive definite matrix    . Clearly, the inner product 

⟨   ⟩       is a covariant tensor of rank 2, and     are its components. Indeed, 

⟨     ⟩     (  )
 
(  )

       
   
 
      

This tensor, generally denoted    , is called the metric tensor, or the metric for short57. The in-

verse of    , considered a matrix (which exists since     is non-degenerate), is denoted    . The 

coordinate-free definition of     is given by 

    
     

   

We have already observed that     yields a natural correspondence between vectors and covec-

tors: Any vector    yields a unique covector       defined by 

 ( )  ⟨   ⟩      
          

which is clearly written        
  in the index notation (why?). We will write this simply as  

       
  

and we may say that “   is the covector induced by the contravariant vector   ”. We also say 

that we have used the metric     to ‘lower the index’ of   . Similarly, given a covector   , the 

inner product yields a unique contravariant vector    by requiring that 

 ( )  ⟨   ⟩       

In index notation 

   
      

     

thus, 

       
   

Notice that    is what you get is you lower the index of   . It follows58 that 

          

and we write 

          

We say that “   is the contravariant vector induced by the covector   ”, and that we have used 

the inverse metric     to ‘raise the index’ of   . If this procedure is to be self-consistent, it is 

necessary, for instance, that you get a vector back if you lower its index and then raise it again. 

But that is what we noticed in (↑). The procedure of ‘raising and lowering indices’ generalises to 

any tensors. For example, 

    
    

         
    

Again, if our notation is to be self-consistent, it is necessary that    , as defined by (↑), actually is 

the unique tensor of type (   ) that you obtain from     by raising both indices using    . For-

tunately, this is so, because 

                                                             
57 However, the ’metric tensor’ is not a metric on   in the usual sense of algebra and functional analysis; 
instead, it is an inner product. 
58 Formally,        

         
      

    
      . 
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It is clear that any tensor of rank   belongs to an equivalence class consisting of    tensors that 

differs only in the vertical positions of their indices. For example, a tensor     belongs to the 

same class as    ,    
  , and    

  . If   and   are two tensors, we write     iff they belong to the 

same equivalence class, that is, if the tensors are equal if their indices are placed on the same 

heights. For technical reasons, we are particularly interested in the tensor   
 . We have 

Proposition NN 

     

in particular, 

         

                  

   
     

   

In addition, 

  
    

          

Proof 

Equation (↑) reads 

   
     

  

and 

  
  ∑  

 (     )

 

   

 ∑  (  )

 

   

 ∑ 

 

   

    

or, in terms of components, 

  
    

 + +   
   + +      

 ∎ 

5.1.8.1 Euclidean Space 

In essentially all elementary mathematics (in particular, in elementary linear algebra) and phys-

ics, we use an orthonormal basis in   . By definition, this means that ⟨     ⟩  [   ]. Thus,59 

    ⟨(  )
  (  )

 
⟩     

  [   ]  

In this case there is no distinction at all between vectors and covectors, for 

       
     

          [    ]  

5.1.8.2 The Inner Product 

Let    and    be two vectors. Then their inner product is 

                                                             
59 If you think that this looks wrong, you forget that we are using Greek indices, not Latin (cf. the final par-
agraph of Section 5.1.5). 
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⟨   ⟩      
       

       

by raising or lowering the suitable indices. This is a special case of the following simple result, 

which actually is easier to prove than to formulate. 

Proposition NN 

In a tensorial term with a pair of equal indices, once upstairs and once downstairs [thus taking 

part in an Einstein summation], the tensor is unchanged if the vertical positions of each of the 

two indices are swapped. 

Proof 

      
          

     
   

∎ 
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5.2 Manifolds 

In this section, we will introduce the concept of a manifold, which is a generalisation of the no-

tions of a curve (a one-dimensional manifold), a surface (a two-dimensional manifold), etc. to an 

arbitrary dimension. What is really ‘new’ is that, although (classically) a curve and a surface are 

always subsets of  2 or   , a general manifold need not to be given as a subset of some higher-

dimensional space. In other words, in general, there is no ‘outside’ of the manifold. 

A (topological) manifold is defined as a topological space (in particular, it is a set) with a number 

of postulated properties. Intuitively, the main property is that about every point in the manifold, 

it ‘looks’, locally, like   , where   is independent of the point and is called the dimension of the 

manifold. For example, if you scrutinize a tiny region of a sphere, it looks very much like the 

plane  2. (Indeed, one used to believe the Earth was flat.) We will not indulge ourselves in all the 

technical details, so we will settle with 

Definition NN 

An  -dimensional topological manifold      is a ‘nice’ topological space that is locally Euclid-

ean, that is, every     has a neighbourhood homeomorphic to some open subset of   . 

If   is a manifold of dimension  , we will occasionally write it      to indicate the dimension 

explicitly. If we introduce a manifold    and then speak of ‘ ’ alone, we mean the very same 

manifold. By ‘nice’ we mean that it is not ‘pathological’; for instance,    is certainly ‘nice’. In 

more technical terms, ‘nice’ most often means ‘Hausdorff’ and either one of ‘second-countable’ 

or ‘paracompact’. Since we will not be particularly interested in ‘pathological’ examples, we will 

simply say that a topological manifold is ‘nice enough’. It is clear that a topological manifold gen-

eralises the notions of a manifold curve and a manifold surface, as given by Definitions NN and 

NN. 

If     is a sufficiently small open subset of   about any point    , there exists an open 

subset      such that there exists a homeomorphism       . The pair (    ) is called a 

coordinate patch (or chart), since   is a ‘patch’ of the manifold, and the function    introduces a 

coordinate system on  . For example, you can consider   to be a small part of the Earth (not 

containing any of the poles), and    to be a function that assigns the latitude and longitude to 

each point in  . Notice that, in the case of a surface      covered by a single patch (    ), 

      
2 might be the inverse of the f-surface     2   . 

We remark in particular that every point in a manifold has a neighbourhood homeomorphic to 

an open set in Euclidean space. The requirement that the set be open implies that, although the 

open disk {(   )   2  2 +  2   } certainly is a manifold, the closed disk {(   )   2  2 +

 2   } is not (it is a so-called ‘manifold with boundary’). This requirement simplifies matters, 

since we do not need to treat ‘boundary points’ separately. 

If (    ) and (    ) are two coordinate patches such that      , we also require that 

    is open and that the transition function          
      (   )    (   ) is a dif-

feomorphism, as depicted in Figure 50. [Thus,    ( ) is the (    ) coordinate of the point in the 

manifold which has   as its (    ) coordinate.] In such case, we say that the patches are com-

patible. A collection (      ) of compatible charts such that ⋃       is called an atlas for  . A 

maximal collection of such charts is called a maximal atlas, and is denoted   . We also write 

     {(    )        } for a maximal set of such charts ‘containing’    . In practice, 
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we specify some initial coordinate patches when we define a particular manifold, and then the 

maximal atlas consisting of all charts compatible with these constitute the maximal atlas   . We 

will therefore always assume that a given manifold has a unique maximal atlas. 

 

Figure 50: The transition function    . 

Definition NN 

An  -dimensional topological manifold is called an  -dimensional differential manifold if it has 

an atlas of compatible coordinate charts. 

Generally, we will assume ‘diffeomorphic’ to mean ‘smooth diffeomorphic’. From now on, a 

‘manifold’ will always be assumed ‘differential’. 

We also remark that the requirement that a manifold ‘looks’ like Euclidean space locally does not 

mean that it does so globally. Consider, for example, the cylinder {(     )      2 +  2  

  | |   } which is a differentiable manifold, and certainly looks like the Euclidean plane  2 at 

any point. Still, the area60 of the cylinder is finite, while the area of  2 is infinite. In addition, 

there are closed curves on the cylinder that cannot be continuously deformed to a single point, 

which is highly ‘odd’ if you are only used to  2. The point is that the topology of an  -

dimensional manifold may not resemble that of   . 

Notice that we can work with general  -dimensional manifolds in much the same way that we 

work with surfaces in space. Indeed, when we speak of a point on such a surface, we give its co-

ordinates, and every point on a general manifold belongs to a coordinate patch that has a coor-

dinate system on it. In particular, when we specify a point in a manifold, we generally do so by 

instead specifying the coordinates of the point in some local coordinate chart (    ). And when 

we specify a curve on a manifold   , instead of specifying a function      , we specify 

                                                             
60 Here we allow ourselves to use the ‘induced’ metric properties of the ambient   , which, of course, can-
not be done in general. 
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 . This, I think, is a very important point to realise; let us call it ‘the coordinate 

patch observation’, in lack of a better term. 

We remark that our definition of a manifold does not admit self-intersecting curves and surfaces. 

Some of the ‘pathologies’ associated with such objects were discussed in Section 4.2.1. Now we 

can give yet another reason why we do not admit self-intersections: In physics, space (and, in 

relativity, spacetime), is modelled as a manifold of dimension three (resp. four). Consider now a 

curve intersecting itself, as in Figure 51. 

 

Figure 51. A curve intersecting itself. 

At almost every point on the curve, a bug can go walk in either of two directions: either ‘for-

wards or ‘backwards’, that is, there is one linearly independent direction along which she can 

walk. However, at the particular point  , she can also choose to walk ‘upwards’ or ‘downwards’. 

Similarly, new ‘directions’ appear along a curve of self-intersection on a self-intersecting surface. 

Now, imagine how surprised you would become if you were on your way to the bus and, sudden-

ly, you find a surface in space along which there are four (linearly-independent) spatial direc-

tions along which you can move! 

In a general manifold, of course, there is no notion of ‘distance’, ‘angle’, ‘area’, or ‘volume’. The 

reason why we are able to speak about such concepts on curves and surfaces embedded in    is 

that    is an inner-product space, and the inner product induces a norm, and, in particular, a 

metric. This metric, in turn, induces a metric ‘on’ the curve or surface. 

5.2.1 Functions on Manifolds 

If    and    are two smooth manifolds, a function       is said to be continuous (differenti-

able, smooth, …), iff, at every point    , there is a coordinate patch (    )       and a coor-

dinate patch (    )      ( ) such that the map        
          is continuous (differen-

tiable, smooth, …). Furthermore, if there are more than one pair of such coordinate patches, then 

the map        
   will be continuous (differentiable, smooth, …) for every possible pair of 

maps in each atlas, because of the compatibility requirement. This definition is very natural, al-

most obvious, if have learned to appreciate the ‘coordinate patch observation’. Indeed, when we 

specify a function      , we most frequently do this by actually specifying the map 

       
  , perhaps even without thinking of it. For example, if the temperature on the Earth, 

which we consider a sphere of radius  , is 

 ( )   +             

at spherical coordinate   [   ], then we have specified a map not from the Earth itself, but 

from the parameter plane of the Earth, to the real numbers (which is a manifold itself). 

𝑃 
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A curve on a manifold   is a continuous function      , where     is an open interval. Since 

such an interval is a manifold, the term ‘continuous’ is well-defined by the last paragraph. We 

might also refer to the image  ( ) as a curve; we will relax the usage of the ‘f-’ prefix somewhat, 

if there is no risk of confusion. Most often we are interested in differentiable and smooth curves. 

In fact, we will generally assume all functions to be as differentiable as required. As usual, we 

generally describe a curve by actually specifying         
 ; for example, a part of the equa-

tor of the Earth is the image of 

 ( )  ( ( )  ( )  ( ))  (  
 

 
  )    ]   [  

For technical reasons, we also consider the trivial curve at     to be a curve consisting only of 

the point  . Formally, this can be thought of the image of a function   { }    where  ( )   . 

5.2.2 Submanifolds of Euclidean Space 

Loosely speaking, a submanifold of a manifold   is a subset of   that qualifies as a manifold in 

its own right. For example,    is a three-dimensional manifold, and the unit sphere  2     is a 

two-dimensional submanifold of   . In addition, the equator {(     )   2    }  

{(     )      2 +  2       }, which we can identify (in an obvious way) with the unit cir-

cle   , is a one-dimensional submanifold of  2 (and, by transitivity, of   ), Thus 

    2     

where each ⊂ denotes a submanifold inclusion. In this case, the dimension of the manifolds 

forms a strictly increasing sequence. However, of course, a submanifold of    does not need to 

be of lower dimension than   . For example, the interval ]    [ is a one-dimensional submani-

fold of  . More generally, the open unit ball       is an  -dimensional submanifold of   . 

A particularly important class of manifolds are those that are submanifolds of some Euclidean 

space   . This includes the spaces    themselves, as well as the (manifold) curves and surfaces 

we worked with in the chapter on classical differential geometry, but it also includes many more 

examples, for instance, an infinite collection of 1986-dimensional submanifolds of      . In fact, 

the ‘Whitney embedding theorem’ (which we are not going to prove) states that every  -

dimensional smooth manifold can be ‘embedded’ [a precise definition of an ‘embedding’ is not 

hard to give, but will not be interesting to us] in  2 . Thus, the ‘particularly important class’ we 

were talking about in fact includes the class of all smooth manifolds! Since we are essentially 

only interested in smooth manifolds, it follows that (essentially) all manifolds we are interested 

in can be thought of as submanifolds of some Euclidean space of high-enough dimension. How-

ever, it is interesting to note that it is not possible to strengthen the Whitney theorem much 

more. For instance, it is in general not possible to embed an  -dimensional manifold in     . 

Notice that, when we speak of some Euclidean      as a manifold, there is a natural choice of 

a coordinate system on   , namely, the chart (   ) where         is the identify map on 

  . Hence, in the case of Euclidean space (using this natural coordinate system), there is no dif-

ference between the manifold itself and its coordinate space. We implicitly used this observation 

in the example (↑) above. 

Even though every smooth  -dimensional manifold    can be embedded in some Euclidean 

space   , we still prefer to talk about such manifolds without any reference to such an   . 

There are a number of reasons for this. First, an embedding need not be unique; thus, if you de-

duce a property of a manifold using some particular embedding, you don’t know for sure (per-

haps) whether this is an intrinsic property of the manifold, or if it only holds for this (or some) 
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particular embedding(s). Second, it might be difficult to find an explicit embedding of the mani-

fold (that is, essentially, a parameterisation of the manifold considered a subset of   ). Third, 

we might not even be interested in this   . For instance, if we have found out that our 

spacetime is some particular four-dimensional manifold   , then it is not obvious at all that the 

   with the lowest     in which    can be embedded should have any physical significance. 

Finally, if you do not rely on the fact that every smooth manifold can be embedded in some high-

er-dimensional Euclidean space, then you can make your text self-contained without having to 

prove the Whitney theorem. 

In this subsection, however, we will consider the special case in which a manifold    has an 

explicit embedding in some    (including the identity embedding). 

5.2.2.1 Tangent Spaces and the Differential 

We have already defined the tangent space of a surface    ( )     at    (   ) as the line-

ar span of   (   ) and   (   ), often imagined as a copy of  2 translated as to have its origin at 

    . Although we didn’t, we could also have defined the tangent space of a curve    ( )  

   at    ( ) to be the linear span of   ( ), imagined as a copy of   with  its origin at     . 

We will now generalise the tangent space to any submanifold      . This is pretty easy: 

Definition NN 

Let       be a submanifold of Euclidean   , where   [    ]. Fix any point    . Then 

the tangent space     of   at   is the linear subspace of    consisting of (or, if you prefer, 

‘spanned by’) all possible tangent vectors 

 

  
( ( ))|

   
 

where        is any differentiable f-curve on   [that is,  ( )   ] passing through   at     

[that is,  ( )   ].     is a copy of   , and we imagine that its origin lies at     . 

If      , then the tangent space at every point      is a copy of   . In particular, in   , 

every tangent space is a copy of    with origin imagined at     , that is,    
  is the set of all 

geometric vectors based at     . For example, if a particle is at  ( )     at time  , then its 

velocity at this time is  ̇( )    ( ) 
  which is a vector based at  ( ). 

Consider now a (differentiable) map         between two submanifolds of Euclidean space. 

A (differentiable) curve        on the first manifold will induce a curve  2           on 

the second manifold, that is, 

 2( )   (  ( ))       

Differentiation yields 

 ̇2( )   ̇(  ( ))   ̇ ( ) 

where  ̇(  (  )) is the Jacobian matrix of   evaluated at   ( ). Notice that 

 ̇ ( )     ( )   ̇2( )     ( )   

Thus, every (differentiable) function       induces a collection of linear transformations 

 ̇         ( ) , that is, one at every point            , each of which can be interpreted 
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as sending tangent vectors on   to the ‘corresponding’ (in the precise sense given above) tan-

gent vectors on  . The matrix of such a transformation  ̇  is simply the Jacobian matrix of   

evaluated at  .  ̇  is called the differential of   at   and is denoted   , where (somewhat unfortu-

nately) the  -dependance is understood. 

 

Figure 52. The differential    of a map       at a point    . 

We have actually encountered a number of differentials already, perhaps most notably in the 

context exemplified by Lemma NN. Indeed, if    ( )   ( ( )) is a curve on a surface 

   ( )    , then 

 ̇( )   ̇( ( ))   ̇( ) 

where 

 ̇( )    ( )  

is a tangent vector in the tangent space   ( )  of the parameter plane   and 

 ̇( )    ( ( ))  

is the corresponding tangent vector in the tangent space   ( ( ))  of the surface  .       is a 

differentiable map between the manifolds   and  , and so the tangent vectors  ̇( ) are sent to 

the tangent vectors  ̇( ) by the differential    with matrix  ̇( ( )) at  ( ). 

𝑀 

  

𝑁 

  

 

𝐹 

𝑥  𝑀 
𝐹(𝑥)  𝑁 

𝑣  𝑇𝑥𝑀 

𝐹 (𝑣)  𝑇𝐹(𝑥)𝑁 
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Figure 53. The differential    corresponding to an f-surface  . 

5.2.2.2 Basis Vectors in Tangent Spaces 

If we are to work efficiently with a tangent space, we need to agree on a basis in it. This is trivial 

in the case of   . Indeed, if         are basis vectors for   , then we can simply use the very 

same geometric vectors as the basis vectors of every tangent space    
  (    ). Geometrical-

ly, we simply parallel propagate the vectors from the origin of    to the origin of    
 . 

In a general manifold, this cannot be done, since there is no notion of parallel transport. In addi-

tion,  although every tangent space is a copy of   , where   is the dimension of the manifold, the 

manifold itself need not be Euclidean   , and so need not to have a basis itself. Recall that a basis 

is something you can assign a vector space, and a general manifold has no vector space struc-

ture. Consider, for example, a cylinder, or a sphere. How would you define the ‘sum’ of two ele-

ments of such a space? Nevertheless, we will see there is a natural way of finding a basis for     

if     where (    ) is a coordinate chart, by using derivatives of the map   
  . 

The general idea might be familiar from the language of curvilinear coordinates in ordinary cal-

culus. For example, consider the Euclidean plane,  2. The usual basis vectors  ̂  (   ) and 

 ̂  (   ) are identified as two orthogonal, unit-length arrows starting at the origin, and these 

geometrical vectors also serve as the basis vectors of the tangent space    
2 at every    2. An 

alternative, and more general, characterisation of these tangent-space basis vectors is obtained 

from the coordinate system of the plane as follows. Consider a particle at (   ). If the particle is 

moved by keeping   fixed and increasing  , then it moves in the direction of  ̂, and so we can 

define the tangent-space basis vector  ̂ at this point as a unit vector of this direction. Similarly,  ̂ 

may be defined as a vector of unit length pointing in the direction of motion corresponding to 

fixed   and increasing  . Since, at any point in the plane, a motion with increasing   and fixed   

(and vice versa) occurs in the same geometrical direction, it follows that  ̂ and  ̂ are the same 

geometrical vectors in every tangent space. 

Now, consider instead the system of polar coordinates (   ), defined by the bijection 

        

        

𝐹 𝐯 𝐹 (𝐯) 
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where   √ 2 +  2    is the distance from the origin and   [    [ is the angle that the ra-

dius vector makes with the positive  -axis. Just as every geometric point in the plane has unique 

coordinates (   ), it also has unique coordinates (   ). The coordinate curves of any coordinate 

system are the curves where exactly one coordinate is increasing while the others are held fixed. 

Thus, the coordinate curves of the Cartesian coordinate system (   ) are simply the images of 

  (    ) for fixed      and   (    ) for fixed      where    . As remarked above, at 

any point in the plane, the tangent-space basis vectors can be defined as the instantaneous unit 

tangent vectors of the two coordinate curves passing through the point in question. Since a gen-

eral coordinate curve in polar coordinates can be parameterised 

 (   )   (
     
     )  

keeping exactly one variable fixed, we have the tangent-space basis vectors 

 ̂(   )   (
    
    )   ̂(   )   (

     
    

) 

by differentiation and rescaling61. Thus, the tangent-space basis vectors, induced by the polar 

coordinate system, vary from point to point in the plane! 

 

Figure 54. The tangent-space basis vectors induced by the (planar) polar coordinate system. 

The idea of making use of the coordinate chart to determine tangent-space basis vectors general-

ises easily to general submanifolds of   . Indeed, if       is a submanifold of   , and   

 , then there is a local parameterisation function       where      and    ( )   ( ) 

and the tangent vectors      ⁄         ⁄  evaluated at   (       )   , form a basis for 

the tangent space at  . In particular, if    ( )     is a surface with coordinates (   )   , 

then   (   ) and   (   ) not only span the tangent space at  (   ), but also serve as basis vec-

tors in it; this is a fact we have used many times before. For the particular example of a sphere, 

see Figure 37 on page 199, where the basis vectors should be called  ̂ and  ̂ and stem from the 

usual parameterisation of a sphere. 

                                                             
61 The original lengths of the derivatives are called the scale factors associated with the coordinates. In this 
case, they are   and  , respectively. 
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5.2.3 General Manifolds 

We now turn to the case of a general manifold    that is not given as a subset of some Euclidean 

space. Our first goal is to define the tangent space     for every    . Perhaps the most com-

mon approach is to use the notion of a derivation. This approach is based on the natural identifi-

cation between vectors and derivative operators known from   , which we will review first. 

First, let us introduce the convenient (and standard) notation 

   
 

   
 

where         are local coordinates on the manifold, associated with a particular coordinate 

patch (    )    . We remark that the subscript   in    is treated like a subscript index as far 

as the Einstein convention is concerned. 

5.2.3.1 Derivations in    

Consider a scalar field        in Euclidean   . If       
  is a unit vector at     , then 

the directional derivative of   at   in the direction of    is 

∑
  

   
   

 

   

        

evaluated at   (Cartesian coordinates assumed). In classical notation, this is the ordinary direc-

tional derivative of  ( ) at   in the direction of   (which has to be of unit length) as defined by 

  
 ( )     

    

 ( +   )   ( )

 
   ( )     

We now generalise this concept slightly by skipping the requirement that    is of unit length. We 

say that62 

  ( )   
    ( ) 

is the derivative of   with respect to  , an arbitrary vector, at  . This way, every vector      
  

yields a unique derivative operator    ℱ   , where ℱ  is the set of differentiable scalar fields 

defined in a neighbourhood of  . This operator satisfies two main properties. 

Proposition NN 

The derivative operator    is linear and Leibnitz at  , that is, 

  (  +   )     ( ) +    ( ) 

and 

  (   )   ( )    ( ) +   ( )   ( ) 

for all     ℱ  and constants      . 

Proof 

  (  +   )   
   (  +   )    

   ( ) +   
   ( )     ( ) +    ( ) 

                                                             
62 In the symbol   ( ) the dependence on the point     is implied because the vector      . 
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and 

  (   )   
   (   )   

 ( ( )     +      ( ))   ( )   
   ( ) +  ( )   

   ( )  

  ( )    ( ) +   ( )   ( )  

∎ 

Definition NN 

An operator   ℱ    that is linear and Leibniz at   is called a derivation at     . 

Conversely, one can show that every derivation at      is of the form (↑) for some unique vec-

tor       
 . Hence, (↑) displays a bijection from the tangent space    

  to the set of deriva-

tions at  .  

5.2.3.2 Derivations in General Manifolds 

Although the concept of a tangent space, as defined using an ambient Euclidean space (as in Def-

inition NN), cannot be translated immediately to general manifolds (the best way to see that is to 

attempt and fail), it turns out that the concept of derivations can. In comparison, this is rather 

straightforward: 

Definition NN 

Let    be a manifold, and let    . Then ℱ  is the set of real-valued differentiable functions 

defined in some neighbourhood of  , and an operator   ℱ    that is linear and Leibniz at   is 

called a derivation at  . Finally,     is the set of all derivations at  . 

 

(Definition and) Proposition NN 

Let       2      be any three derivations, and let     be a constant. Let (  + 2)  ℱ  

  and (  )  ℱ    be defined by (  + 2)( )    ( ) +  2( ) and (   )( )    ( ), 

respectively, for all   ℱ . Then (    +  ) is a vector space. 

Proof 

By definition, for any pair of functions     ℱ  and constants       we have 

(  + 2)(  +   )    (  +   ) +  2(  +   )  

    ( ) +    ( ) +   2( ) +   2( )  

    ( ) +   2( ) +    ( ) +   2( )   (  + 2)( ) +  (  + 2)( )  

thus, (  + 2) is linear. Furthermore, 

(  + 2)(   )    (   ) +  2(   )  

  ( )    ( ) +   ( )   ( ) +  ( )   2( ) +  2( )   ( )  

  ( )  (  + 2)( ) + (  + 2)( )   ( )  

and so (  + 2) is Leibniz at  , too. Therefore, (  + 2)      . The proof that (  )      

is analogous (but easier). The rest of the vector space axioms are trivially satisfied. ∎ 

Proposition NN 

If       is a submanifold of Euclidean space, then     is isomorphic to     for every   

 , where the isomorphism is 
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where 

  ( )   
    ( )  

Proof 

For every   ℱ , 

    ( )  ( 
 +   )   ( )   

    ( ) +  
    ( )    ( ) +   ( )  (  +  )( ) 

and so the mapping from vectors to differential operators is linear, that is, a vector space homo-

morphism. The rest of the proof is left as an exercise. ∎ 

In the case where   is a submanifold of Euclidean space,     is isomorphic to the tangent space 

   , where the isomorphism is given by ( ). It is therefore natural to make 

Definition NN 

Let    be a manifold, and let    . The tangent space     of   at   is the space     of deriva-

tions at  . Each element of     is called a tangent vector at  . 

 

A vector field is an assignment of a tangent vector to each tangent space of a manifold. In order to 

specify tangent vectors, and thus vector fields, we need to decide on a basis in each tangent 

space. 

Proposition NN 

Consider a tangent space     and a coordinate chart (    )       where   has coordinates 

     ( 
 ). Then the tangent vectors 

 

   
   

 

   
 

defined by 

 

   
 (  [  ( (  

  (  ))]
    

)     ℱ  

form a basis for    . 

Proof 

TBW. 

Notice that, according to the ‘coordinate patch observation’, the expression 
 

   
(    

  ) is 

simply the derivative of   in the direction of   . In the case of a manifold embedded in   , the 

basis         [as we will often abbreviate 
 

   
   

 

   
] reduces to the usual tangent-space basis. 

Indeed, if    ( )     is a manifold surface covered by a single coordinate patch (   ), then 

     , as usual. Thus, with coordinates      and  2   , 
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( )  

 

   
( (   (    2))  

 

   
( ( (    2)))     

  

   
 

for any   ℱ (     ). Using the isomorphism between derivations and vectors in Euclidean 

space, we see that the two basis vectors are 

  

   
 
  

  
 

and 

  

  2
 
  

  
 

as expected. The basis         is called the coordinate basis, and clearly depends upon the co-

ordinate patch used.  

5.2.3.3 The Cotangent Space 

Definition NN 

Let   be a manifold. The cotangent space   
   (   )

  at     is the dual space of the tan-

gent space     at  . Elements of (   )
  are called dual vectors, covariant vectors, or simply 

covectors. 

We have already seen that there is a natural choice of basis in a dual space given a basis in the 

original space. Indeed, the  th dual-space basis vector is the linear functional that reads off the 

 th coordinate of a vector. In this subsection, we will investigate the relation between this basis 

and the coordinate chart of the manifold. 

In Section 5.2.2.1 we introduced the differential of a map        . We now make 

Definition NN 

Let       . The differential of   at     is the linear functional 

  ( )    ( )   
 (   )( )        

where the partial derivatives are with respect to a coordinate chart (    )      . 

Strictly speaking,   ( )    (  (    
  )) ( ). It is easily verified that the expression       

has the same value in any coordinate system, despite the fact that the differential operators    

themselves are (obviously) coordinate system dependent. 

If      is  -dimensional, then we may consider the differentials of the   coordinate functions 

       . By definition, these are 

   ( )    ( 
 )       

      
      

thus,     reads off the  th component of its argument! That is, 

       

where    are the dual basis vectors. In other words, the covectors 
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form a basis for the cotangent space (   )
  of   at     that is adapted to the local coordinate 

chart. 

Observation NN 

A local coordinate chart (    )     yields a basis         in every tangent space     and a 

basis           in every cotangent space   
   (      ). 



ANDREAS REJBRAND D R A F T  http://english.rejbrand.se 

 283/314 

5.3 Tensor Fields on Manifolds 

In this section, we will introduce the concept of tensor fields on manifolds. 

5.3.1 Tensor Fields 

5.3.1.1 Vector Fields 

A vector field on a (subset of a) manifold is a rule that singles out a tangent vector in each tan-

gent space of the (subset of the) manifold; as is common practice, we also refer to the image of 

this rule as the ‘vector field’. A vector field on a general manifold   is, naturally, specified using a 

local coordinate system (    )    . Thus, it is of the form 

 ( )    ( )       

where each       . In practice, we specify also the points in   using the coordinate chart, 

and write 

 ( )    ( )       ( )   
  

where each       ( )    and     
  ( ). Clearly, the coordinate basis vectors    are them-

selves examples of vector fields. A vector field   is said to be smooth (continuous, differentiable, 

…) iff the functions       ( )    are smooth (continuous, differentiable, …), as is obvious 

from the ‘coordinate patch observation’. 

For example, a vector field on the usual two-sphere  2 is of the form 

 (   )   (   )  +  (   )    

or, in classical notation, 

 (   )   (   ) ̂ +  (   ) ̂  

5.3.1.2 Transformation Properties of Tangent Vectors 

Since a tangent vector is a vector in a tangent vector space, it is a contravariant tensor of rank 1 

over this space, and transforms as such under a change of basis in this space. The question is, 

“how does the tangent-space basis vectors actually change if you change coordinates in the man-

ifold?” [Recall Observation NN, which states that the coordinate basis of each tangent space is 

induced by the manifold’s coordinate chart.] 

To investigate this, let (    )       and (    )       be two charts containing the point 

   . Let          
      (   )    (   ) be the transition function. If    are coordi-

nates in   and     are coordinates in  , then the Jacobian of the transition function is 

  ̇  

(

 
 

    

   
 

    

   
   

    

   
 

    

   )

 
 
  

If the     coordinate basis vectors are denoted    and   
  when induced by each coordinate 

patch, then, by the chain rule, 
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which completely describes the vector-space change of basis. Comparing with Equation NN on 

page NN, we have 

      ̇   

Thus, the vector transformation rule, 

    (   ) 
     

can be written 

    
    

   
    

5.3.1.3 Covector Fields 

Similarly, a covector field on a manifold is a rule that selects a single covector from each covector 

space in the manifold. A covector field on a general manifold   is, naturally, specified using a 

local coordinate system (    )    . Thus, it is of the form 

 ( )    ( )  
      

where each       . In practice, we specify also the points in   using the coordinate chart, 

and write 

 ( )    ( )  
      ( )   

  

where each       ( )    and     
  ( ). The basis vectors     are themselves examples of 

covector fields. A covector field   is said to be smooth iff the functions       ( )    are 

smooth. 

5.3.1.4 Transformation Properties of Covectors 

Using the results from Section 5.3.1.2, we have that a covector transforms like 

  
  

   

    
   

under a change from unprimed to primed coordinates in the manifold. 

5.3.1.5 Tensor Fields 

More generally, a tensor field on a manifold   is a rule that, at every point     picks out a 

tensor over the tangent space     at  . As usual, we specify a tensor field using a local coordi-

nate system on  . For example, a covariant tensor field of rank 2 will be written 

 ( )     ( )  
          

where each        , or, in practice, 

 ( )     ( )  
          ( )   

  

where each        ( )    and     
  ( ). 

5.3.1.6 The Classical Definition of a Tensor 

We will now (finally!) be able to explain the term ‘almost’ that we (mis-) used in Section 5.1.7.6. 

The thing is, that in classical tensor analysis and physics text, one usually means ‘tensor field’ 

when one speaks simply of a ‘tensor’. Thus, such a text would probably do 
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Classical Definition NN 

A contravariant tensor of rank   is a set of    scalar fields           (   [    ]) such that, under 

a change of basis described by the matrix  , they transform as 

(  )        
     

    
 
     

    
          

A covariant tensor of rank   is a set of    scalar fields          (   [    ]) such that, under a 

change of basis, they transform as 

        
  

    

     
 
    

     
          

A tensor of type (   ) and rank  +   is a set of      scalar fields         
        (      [    ]) such 

that, under a change of basis, they transform as 

(  )       
        

     

    
 
     

    

    

     
 
    

     
        
        

where       and the tensor is said to be mixed if      . 

5.3.2 Riemannian Manifolds 

We have seen that, in any vector space, an inner product can be described by a covariant tensor, 

called the metric tensor. We will now define a smooth tensor field, which assigns such a tensor 

to each tangent space in a manifold. We first make 

Definition NN 

Consider tensors over a vector space  . A tensor     is positive definite iff    (   )    and 

   (   )       , for all    . A tensor     is non-degenerate iff    (   )         

   . 

 

Corollary NN 

A positive definite tensor is non-degenerate. 

Proof 

Let     be positive definite, and assume that    (   )    for all    . Then, in particular, 

   (   )    and so     by positive-definiteness. ∎ 

Naturally, a positive-definite (non-degenerate) tensor field is a tensor field such that at every 

point    , the tensor over     is positive definite (non-degenerate). We now define a metric  

tensor field, and we also give a special name to manifolds equipped with such a field. 

Definition NN 

A Riemannian manifold is a smooth manifold with a prescribed smooth, symmetric, and positive-

definite tensor field    . A pseudo-Riemannian manifold is a smooth manifold with a prescribed 
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smooth, symmetric, and non-degenerate tensor field    . In each case, the tensor field     is 

called the metric [tensor [field]] of the manifold. 

Notice that a Riemannian manifold is a manifold in which every tangent space has a metric ten-

sor, that is, essentially, an inner product. A pseudo-Riemannian manifold is a slightly more gen-

eral object, in which every tangent space has a bilinear function that satisfies some of the axioms 

for an inner product (such as symmetry or ‘commutativity’), but not the axiom of positive-

definiteness. This means that a tangent vector in a pseudo-Riemannian manifold may have nega-

tive norm-squared, where the norm-square ‖  ‖2, as usual, is induced by the inner product ⟨   ⟩ 

by 

‖ ‖2  ⟨   ⟩      
            

A two-dimensional (manifold) surface      is a Riemannian manifold with the first fundamen-

tal form as its metric tensor. More precisely, the metric tensor              of   at     is 

defined by 

  (   )   
 ℱ           

where ℱ is the first fundamental form of  . Being a quadratic form,    is symmetric, and, in addi-

tion, it is positive-definite since ℱ is; hence,    is indeed a metric tensor. Usually, we will write it 

simply as   or    , where it is understood that it is a tensor field. 

Using a local coordinate chart (   )    , (the image of) a metric on a (pseudo-) Riemannian 

manifold is written 

   (   )     ( ) 
             

where     or, in practice, 

   (   )     ( ) 
             

where    ( ). Thus, the tensor itself may be written 

         
       

where           is the dual basis field of the chart. Usually we omit the tensor multiplication 

sign and denote the tensor by   2. Then we end up with 

  2       
      

In addition, we write 

(   )2         

and if our local coordinates are     ,  2   , and     , say, then we may even use the dan-

gerous notation 

  2  (  )2  (   )2              

and similarly for   2 and   2. The reason for these conventions should be apparent from the 

following example. 

Example NN 

In classical physics, space is a three-dimensional Riemannian manifold, namely,      

equipped with the (constant) metric 
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  2    2 +   2 +   2 

where    , and   are Cartesian coordinates in  . Now, let        at some    . Then the 

norm-squared of    is 

  2(     )      
    (  2 +   2 +   2)(     )  

 (     )(     ) + (     )(     ) + (     )(     )  

   (  )    (  ) +   (  )    (  ) +   (  )    (  )  

      +  2   2 +       (  )2 + ( 2)2 + (  )2  

Thus, the expression (↑) for a metric simply says that the norm-square of a vector is the sum of 

the norm-squares of the components of the vector! In classical tensor analysis, one would say, 

slightly less rigorously, that    is the length of an ‘infinitesimally small displacement’ corre-

sponding to (equally infinitesimal) changes   ,   , and    in the coordinates  ,  , and  . 

Notice that the components 

       (  )
 (  )

 
   

  

so we may write 

    (
   
   
   

)  

5.3.2.1 Curves 

Consider a smooth  curve       on a manifold   . To each point    , we wish to assign a 

tangent vector  ̇    ( )  to the curve. This is rather straightforward, even in the most general 

case. 

Definition NN 

Let       be a smooth curve on a smooth manifold   . Then the tangent vector to the curve 

at      is the tangent vector   ℱ (  )      (  )  defined by 

 ( )  
 

  
( ( ( ))|

    

    ℱ (  ) 

where the derivative is taken in the ordinary sense, for         . 

Now, pick a coordinate chart (   ) for the manifold. Then 

 ( )  
 

  
( ( ( ))|

    

 
 

  
( (   ( ( ( ))))|

    

 
 

  
( ( ( )))|

    

 

where              is the coordinate expression for  , and             is the 

coordinate expression for the curve (thus, a curve in coordinate space). But then 

 ( )      ̇   ̇      ̇
    ( 

  ( ))   ̇   ( ) 
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using the definition of the coordinate basis. Thus, the components of the curve’s tangent vector 

in the coordinate basis are  ̇ , that is, the coordinates of the usual coordinate-space curve 

         . It also follows from this that the vectors    are the tangent vectors to the corre-

sponding coordinate curves. 

We can now define the length of an arbitrary curve on a Riemannian manifold: 

Definition NN 

Let       be a smooth curve on a smooth Riemannian manifold   . Then the length of   is 

   ∫  
 

 ∫ √  2( ̇  ̇)  
 

 

 ∫ √(  2( ( ))) ( ̇( )  ̇( ))
 

 

   ∫ √    ̇
  ̇   

 

 

 

where        and       . 

If    2     is a manifold surface with its first fundamental form as its metric tensor field, 

then the length of any curve on  , as given by the previous definition (which holds for any Rie-

mannian manifold) coincides with the length as computed using classical theory (cf. Section 

4.3.4.1). But be sure to notice that our new machinery is far more general! 

Example NN 

Let    2 be the Euclidean plane with Cartesian coordinates and (hence) metric 

  2    2 +   2 

and consider the unit circle 

 ( )  (         )   ]    [  

The metric has components 

    (
  
  

) 

and the coordinates of the curve’s tangent vector are 

 ̇  (
     
    

) 

at time  . Thus, the length of the curve is 

   ∫ √    ̇
  ̇   

2 

 

 ∫ √   2  +    2    
2 

 

     

 

Example NN 

Again, let    2 but instead of Cartesian coordinates (   ), let us employ polar coordinates 

(   ), as defined by                . Formally, let ( 2  ) be the Cartesian coordinate 
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patch, where    2   2 is the identity function, and let ( 2  ) be the polar coordinate patch. 

The metric tensor has components 

    (
  
  

) 

in the Cartesian system, and so, in the polar system, the components of the metric tensor are 

   
  

   

    
   

    
    (

  
  2

) 

which is written 

  2    2 +  2  2 

in classical notation. Now, the same curve as in the last example (i.e., the unit circle) is 

 ( )  (   )   ]    [ 

and therefore the components of the curve’s tangent vector are 

 ̇   (
 
 
)  

Thus, the length of the curve is 

   ∫ √   
  ̇   ̇    

2 

 

 ∫ √ 2  
2 

 

 ∫    
2 

 

     

 

Example NN 

Let  2 be a Riemannian manifold with coordinates (   ) in  2, and metric 

  2    2 +     2  

Consider the curve  ( )  (   ) with   ]    [. We want to find the length of the curve. But we 

have already computed this curve length, in Example NN, where we formulated the problem in 

terms of the first fundamental form of a surface in 3-space! 

 

Example NN 

Let    be a Riemannian manifold with coordinates (     ) in   , and metric 

  2   2    2 + ( +  2)   2 +   2  

Consider the curve  ( )  (      ),   ]    [. The length of this curve is 

   ∫ √   +   2 +    
 

  

 ∫ ( 2 +  )  
 

  

  +            
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A Riemannian manifold has a positive definite metric tensor that we use, for example, to find the 

length of curves. This, in turn, allows us to define a metric (in the algebra sense of the word) on 

the manifold. 

Definition NN 

Let   be a Riemannian manifold with metric tensor   2. Define 

 (   )     
   
      

   
∫√  2

 

 

where   is the set of all piecewise smooth curves starting at     and ending at    . 

 

Proposition NN 

The function         is an extended metric on  . 

Proof 

For all        , we have 

1.  (   )  [   ] 

This is trivial, because the integrand is non-negative. 

2.  (   )        

We regard the trivial curve at     to be ‘piecewise smooth’. ⇒) If    , then the trivi-

al curve at   is a p.w. smooth curve from   to  , and the length of this curve is ∫   
 

 
  . 

Thus  (   )   . ⇐) TBW. 

3.  (   )   (   ) 

The set   of curves from   to   is identical to the set of curves from   to   except for the 

orientation of the curves.63 This affects the tangent vectors to the curve at each point, 

which are replaced by their vector-space inverses. Since the metric tensor is a quadratic 

form in these tangent vectors, this does not affect the image of the metric tensor.64 

4.  (   )   (   ) +  (   ) 

Let     [   ]    be a p.w. smooth curve from   to  , and let     [   ]    be such a 

curve from   to  . Then   [   ]    defined by 

 ( )  

{
 

    (  )   
 

 

   ( (  
 

 
))    

 

 

 

                                                             
63 Indeed, if   [   ]    is a curve from   to  , then    [   ]    defined by   ( )   (   ) is a curve 
from   to   with the same image. 
64 Formally,    (     )      (    )   (    (   ))     (   ) by linearity (specifically, homoge-

neity) in each slot. 
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is a curve from   to   with length  (   ) +  (   ). If     and     are piecewise smooth, 

so is  . Thus, the infimum of the lengths as taken for all piecewise smooth curves be-

tween   and   must be equal to this value or be smaller. ∎ 
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5.4 Differentiation of Tensor Fields 

5.4.1 Push-Forwards and Pull-Backs 

We are already familiar with the concept of the differential    of a map         as a linear 

map sending tangent vectors at    
  to the ‘corresponding’ tangent vectors at   ( ) 

 . We will 

now generalise this to arbitrary manifolds. The underlying idea is that   very naturally ‘pulls 

backs’ functions       to functions        . 

Definition NN 

Let         be a differentiable map between manifolds    and   . Then the differential, or 

push-forward,    of   at     is the map          ( )  defined by 

(   )( )   (   )        

for all   ℱ ( )  

This reduces to the familiar Euclidean concept of the differential. Indeed, if          and 

     
 , and if we let       then 

      (   )( )   (   )   
   (   )   

 (       
 )     

         

But    
  are the components of the Jacobian matrix  ̇. Thus, in classical matrix notation, 

      ̇      

Since this should hold for any function  , we end up with 

   ̇   

Hence, given a map         we obtain a map,          ( )  sending vectors ‘forwards’. 

But we also obtain, in a natural manner, a map      ( )
     

   sending covectors ‘backwards’: 

Definition NN 

Let         be a differentiable map between manifolds    and   . Then the pullback 

     ( )
     

   of   at   is defined by 

(   )( )   (   )      ( )
   

for all      , where    is the push-forward given by   at  . 

5.4.2 Vector Fields and Flows 

A smooth vector field   ( ) on   assigns a tangent vector to each tangent space    . If we fix 

any point     , then there is, at least locally, a smooth curve       such that  ( )     and 

such that  ̇( )    ( ( )) for    . The family of curves obtained this way is simply the integral 

curves of the vector field. The flow associated with the vector field is the one-parameter dif-

feomorphism        defined by   ( )   ( ) where   is an integral curve to    passing 

through     at    , i.e.,  ( )   . Although we will not prove it in detail, every smooth vec-

tor field has a unique flow associated with it. Notice that           ,   
      , and       

where        is the identity function on  . 
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5.4.3 Ordinary Partial Differentiation 

We want to be able to ‘differentiate’ tensor fields on a manifold. Let us try to do this using our 

usual concepts from Euclidean space: Let    be a smooth vector field on a smooth manifold   . 

Then, in any local coordinate system, we may consider the  2 quantities 

   
   

Of course these numbers depend upon the coordinate chart used; after all, the intuitive descrip-

tion of    
  is that it is the rate of change of the scalar field    in the direction of the  th coordi-

nate curve. However, perhaps    
  are simply the components of a tensor    

  of type (   ), as 

the notation indicates? (But beware that    is just a symbol denoting 
 

   
 which we defined 

without any consideration of tensors.) That is, if there is another coordinate system with coordi-

nates          , then perhaps 

  
     

   

    
    

   
   

   

Let us try to show this. Using the chain rule and the vector transformation rule, 

  
     

 

    
    

   

    
 

   
(
    

   
  )  

   

    
(  

 

   
    

   
+
    

   
   

   
)  

 
   

    
 2   

      
  +

   

    
    

   
   

   

Had it not been for the first term on the right-hand side,    
  would have been a tensor of type 

(   ). As it is, however, it is not. This means that a formulae involving an ordinary partial deriva-

tive does not say anything about the actual tensor field or the manifold, but depends upon the 

coordinate system one happens to be using at the moment. Thus, ordinary partial derivatives are 

not particularly interesting for us. In what follows, we will define two new types of derivatives, 

which are intrinsic and independent upon coordinate system, namely, the covariant derivative 

and the Lie derivative. The covariant derivative is perhaps the most important one for us, but the 

Lie derivative is a simpler object, and so we start with this one in the next section. First, let us 

just make 

Proposition NN 

If       is a scalar field on a manifold     , then the   numbers     form the compo-

nents of a covector. 

Proof 

Let         and           be two coordinate systems. Then 

  
   

   

    
    

by the chain rule. ∎ 

5.4.4 The Lie Derivative 

Let       be a smooth curve on a manifold  . Let   ( )    ( )  be a vector field defined 

along  . It is tempting to define the derivative of    at      as one moves along   as the limit 
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 ̇ (  )  
 
   
    

  (  +  ) 
 
  (  )

 
  

This is perfectly doable in Euclidean space   , but not in general. Why is that? Well,   (  +  ) 

lives in   (    )  while   (  ) lives in   (  ), and so we cannot subtract them.65 The Lie deriva-

tive is one notion of derivative that does makes sense. 

Definition NN 

Let   ( ) and   ( ) be smooth vector fields on  . Then the Lie derivative of    with respect to 

   at     is 

   
     

   

 (  )  
 (  ( ))   

 ( )

 
 

where    is the flow associated with   . 

Notice that   ( )      and  (  )  
 (  ( ))      and so the subtraction is ordinary vector-

space subtraction in    . In particular,    
     , and in the abstract index notation, we may 

write it as (   )
 . Although the definition of the Lie derivative given above has the advantage of 

motivating the name ‘derivative’, it is not particularly useful when it comes to practical computa-

tions. To remedy this, we first need to consider a new construct. 

Recall that a tangent vector       is a derivation, and its image on a scalar field       is 

written  ( ). If   is a vector field, the number  ( ) varies on  , and so it is again a scalar field on 

 . Thus it makes perfect sense to consider  ( ( )) where   is another vector field. This can be 

thought of as applying the operator     to  , and one might wonder if   and   commute, that is, 

if        . As usual in many fields of pure and applied mathematics, we can, to this end, 

introduce the commutator of   and  : 

Definition NN 

Let    and    be two vector fields defined in a neighbourhood of    . Then the map 

   ℱ    defined by 

 ( )  [   ]( )   ( ( ))   ( ( ))    ℱ  

is called the commutator, or the Lie bracket, of   and  . 

 

Proposition NN 

The Lie bracket between two vector fields is a vector field. 

Proof 

We need to show that [   ] ℱ    is a derivation at each    . Since   and   are derivations, 

                                                             
65 For example, think of    2    . Consider two tangent vectors in two different tangent spaces. What 
in the world is the sum, or difference, of these? What does it mean that they are ‘equal’ (that is, that their 
difference is the ‘zero vector’ (in what space??)? Remember that it is cheating to use the ambient   . 
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[   ](  +   )   ( (  +   ))   ( (  +   ))  

  (  ( ) +   ( ))   (  ( ) +   ( ))  

   ( ( )) +   ( ( ))    ( ( ))    ( ( ))  

  ( ( ( ))   ( ( ))) +  ( ( ( ))   ( ( )))   [   ]( ) +  [   ]( ) 

and (recall that   is a fixed point) 

[   ](   )   ( (   ))   ( (   ))  

  ( ( ) ( ) +  ( ) ( ))   ( ( ) ( ) +  ( ) ( ))  

  ( ) ( ( )) +  ( ) ( ( ))   ( ) ( ( ))   ( ) ( ( ))  

  ( )[   ]( ) +  ( )[   ]( ) 

for all       and     ℱ . Thus, [   ] is a derivation at  . ∎ 

Proposition NN 

Let   ,   , and    be vector fields. Then 

(1) [   ]   [   ]  

(2) [   ]             

(3) [  [   ]] + [  [   ]] + [  [   ]]     

Proof 

(1) and (2) are immediate, and, in addition, (1) ⇒ (2). The Jacobi identity (3) follows from direct 

computation. Let       be arbitrary, and let   [   ]. Then 

[  [   ]]( )  [   ]( )   ( ( ))   ( ( ))  

  ( ( ( ))   ( ( )))  [ ( ( ( )))   ( ( ( )))]  

  ( ( ( )))   ( ( ( )))   ( ( ( ))) +  ( ( ( )))  

By renaming the variables, 

[  [   ]]( )   ( ( ( )))   ( ( ( )))   ( ( ( ))) +  ( ( ( )))          

[  [   ]]( )   ( ( ( )))   ( ( ( )))   ( ( ( ))) +  ( ( ( )))  

The Jacobi identity follows by adding these three equations. ∎ 

Proposition NN 

Let         be the basis vector field in some coordinate patch (    )    , and let    and    

be two vector fields. Then the components 

[   ]       
       

   

Proof 

For every scalar field       of class  2 or better, 
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[   ]( )   ( ( ))   ( ( ))   (     )   ( 
    )   

   ( 
    )   

   ( 
    )  

   (       +    
     )   

 (       +    
     )  

          +  
    

       
          

    
       

Now, 

           
          

          
          

   (           )    

because   is of class  2. Therefore, 

[   ]( )       
       

    
      ( 

    
       

 )    

and 

[   ]       
       

   

∎ 

Corollary NN 

Let         be the basis vector field in some coordinate patch (    )    . Then 

[     ]
 
    

Proof 

In the local coordinate patch, 

[     ]
 
   

 
    

    
 
    

    

because the Kronecker symbol   
  is constant for any pair of indices. But a tensor with all com-

ponents equal to zero in some coordinate system is the zero tensor, and the statement follows. ∎ 

We now come to the main result, showing that the Lie derivative and the Lie bracket are the 

same thing! 

Proposition NN 

Let   ( ) and   ( ) be smooth vector fields on  . Then 

   
  [   ]   

Proof 

TBW. 

5.4.5 The Covariant Derivative 

We can obtain a second derivative operator on a general Riemannian manifold by generalising 

the concept of the covariant derivative discussed for two-surfaces in three-space in Section 4.3.7. 

Recall that for such an f-surface, we defined the Christoffel symbols in Definition NN, and the 

expressions for the covariant derivative of a surface-tangential vector field was found in Section 

4.3.7.4. 

Since the Christoffel symbols can be expressed solely in terms of the coefficients of the first fun-

damental form, it is not surprising that they can be expressed in terms of the metric tensor. 
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Proposition NN 

Let    ( )     be a manifold surface with metric tensor    . Then the Christoffel symbols 

   
 
 
 

 
   (     +            ) 

where the components are given in the coordinate patch (     ). 

Proof 

Using tensorial notation, the formulae NN on page NN can be written succinctly as 

       
 
  + (     ̂) ̂ 

where      and  2    and        . Thus, 

          
 
         

 
     

Since 

        (     )        +           
    +    

     

we have 

     +                
    +    

    +    
    +    

        
        

     

    
    +    

         
     

where we have used the symmetry of both the Christoffel symbols and the metric. Thus, 

   
     

 

 
(     +            ) 

and 

   
 
    

   
 
    

     
   

 

 
   (     +            )  

∎ 

Using tensorial notation, we can also rewrite the expression (↑) for the covariant derivative of   

with respect to   much more succinctly as 

(   )
    (   

 +    
   ) 

(check that!). 

Observation NN 

The abstract index notation combined with the Einstein summation convention does simplify 

some formulae significantly! 

We will now generalise the notion of the covariant derivative to any Riemannian manifold. This 

is extremely straight-forward (at least at first sight), because the expression for the Christoffel 

symbols in terms of the metric tensor makes sense in any such manifold, as does the formula (↑) 

for the covariant derivative in terms of the Christoffel symbols. 
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Definition NN 

Let    be a Riemannian manifold with metric tensor  . Then, in any coordinate system, the 

Christoffel symbols are 

   
 
 
 

 
   (     +            )  

If    is a vector field on  , then the covariant derivative of    has components 

   
     

 +    
     

If, in addition,        is a vector at    , then the covariant derivative of    with respect to 

   at   has components 

(   )
       

    (   
 +    

   )  

Finally, if       is a curve on  , then the covariant derivative of   ( )    ( ( )) along the 

curve at time     has components 

(
  

  
)
 

 (  ̇( ) ( ))
 
  ̇( )    ( )

   

We will use the terms ‘covariant derivative’ and ‘connection’ interchangeably. In addition, we 

will often be ‘sloppy’ enough to write    
  instead of (   )

 . 

Let    be a vector field. Recall that we in Section 5.4.3 showed that the  2 numbers    
 , com-

puted in some coordinate system, does not form the components of a tensor of type (   ). How-

ever, the next proposition shows that the components    
     

 +    
    does indeed form 

the components of such a tensor! Hence, slightly loosely, one may say that the second term, in-

volving the Christoffel symbols, constitute the correction required in order to make a tensorial 

derivative operator out of the ordinary partial derivative operator. 

Proposition NN 

If    is a vector field on   , then the  2 numbers    
  form the components of a mixed tensor 

of type (   ). 

Proof 

TBW. 

Corollary NN 

If    is a vector field on    and        is a vector at    , then the   numbers (   )
  form 

the components of a contravariant vector at  , written (   )
     . If    is a vector field on  , 

then (   )
  is too a vector field on  . 

 

Corollary NN 

The Christoffel symbols    
  does not form the components of a tensor of type (   ). 
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Proof 

The definition (↑) implies 

   
     

       
   

If    
  would be a tensor of type (   ), then the contraction    

    with the tensor    would be a 

tensor of type (   ), and so would the vector-space difference    
     

   . Thus,    
  would 

be a tensor of type (   ). ∎ 

It should be noted that different authors use slightly different notation. For instance, (Frankel, 

2004) reserves the word ‘covariant derivative’ for the vector (   )
       

 , while (Wald, 

1984) uses it to denote the mixed tensor    
 , as we do. It should also be noted that, in more 

general treatments of differential geometry, the word ‘covariant derivative’, or  ‘/affine/ connec-

tion’, is used to denote a wide class of differential operators that are required to satisfy a number 

of axioms, whereas we will only be concerned with the most common connection, namely, the 

one that we defined above, in terms of the metric tensor. This connection is known specifically 

as the Levi-Civita connection and is an example of a metric connection. 

We consider two basic properties of the (Levi-Civita) covariant derivative, namely, linearity and 

the Leibniz property. 

Proposition NN 

Let   be the covariant derivative on a Riemannian manifold. Then 

(1)   (  
 +    )      

 +     
  and 

(2)   (  
 )  (   ) 

 +     
  

for all smooth vector fields    and   , constants      , and scalar fields  . 

Proof 

(1)   (  
 +    )    (  

 +    ) +    
 (   +    )   (   

 +    
   ) +  (   

 +

   
 +   )       

 +     
  and 

(2)   (  
 )    (  

 ) +    
 (   )  (   ) 

 +     
 +     

    (   ) 
 +     

   ∎ 

Let us then consider a few basic properties of the Levi-Civita covariant derivative along a vector. 

Proposition NN 

Let   be the covariant derivative on a Riemannian manifold  , and let        . Then 

(1)   (  
 +    )      

 +     
 , 

(2)  (     ) 
      

 +     
 , and 

(3)   (  
 )   ( )  +     

  

for all smooth vector fields    and   , constants      , and scalar fields  . 



 Physics Done Right, an Attempt 

 300/314 

Proof 

(1)   (  
 +    )      (  

 +    )  
    
     

  (    
 +     

 )        
 +

      
      

 +     
   

(2)  (     ) 
  (   +    )   

        
 +       

      
 +     

   and 

(3)   (  
 )      (  

 )  
    
     

  ((   ) 
 +     

 )    (   ) 
 +       

  

 ( )  +     
 . ∎ 

Any map taking a vector field    and a vector   to a vector that satisfies the requirements (1)-(3) 

in Proposition NN is called a ‘covariant derivative’, or a ‘connection’, using the generalised sense 

of the word (as used in Frankel). Thus, the Levi-Civita connection is a connection even in this 

sense. It can be shown that any connection can be written in the form (↑) using some set of    

numbers    
  that transforms under a certain way under a change of basis. These are called the 

coefficients of the connection. Thus, the Levi-Civita is the connection in which the coefficients are 

the usual Christoffel symbols. 

So far we have defined the covariant derivative for vector fields. We may also define it for scalar 

fields: 

Definition NN 

Let   be a scalar field on a manifold  . Then, let 

        

and, if      , let 

           
      ( )  

Besides being natural in its own right, this has the important benefit of making the Leibniz prop-

erty of the covariant derivative more natural. Indeed, now 

  (  
 )  (   ) 

 +     
  

and 

  (  
 )  (   ) 

 +     
   

We can extend the covariant derivative to work with any tensor or arbitrary type (   ) by de-

manding that the Leibniz property always holds. For example, if    is a vector field and    is a 

covector field, then      is a scalar field, and 

  ( 
   )  

     
   

(   
 )  +  

      

Therefore, 

         ( 
   )  (   

 )   
    
  ( 

   )  (   
 +    

   )   

 (   
 )  +  

      (   
 )      

       
         

      

   (        
   ) 

should hold for every vector field   . Hence 
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is the expression for the covariant derivative of a covector field. Proceeding in a similar manner, 

one can show that 

               
        

     

The Levi-Civita connection is a metric connection. The property proven below is the defining 

characteristic of such a connection.  

Proposition NN 

Let   be the covariant derivative on a Riemannian manifold with metric  . Then 

         

Proof 

               
        

     

       
 

 
   (     +            )    

 
 

 
   (     +            )    

       
 

 
  
 (     +            )  

 

 
  
 (     +            )  

       
 

 
(     +            )  

 

 
(     +            )    

because the metric tensor is symmetric. ∎ 

It is natural to ask whether or not the covariant derivative is symmetric in the sense that 

   
  
 
   

  

for all vector fields    and   . Thus, we investigate 

   
     

    (   
 +    

   )    (   
 +    

   )  

      
 +      

         
       

         
       

  [   ]  

because the Christoffel symbols are symmetric. If we had used a general connection, which gen-

erally has non-symmetric connection coefficients, we would end up with the so-called torsion 

tensor66 

   
     

     
  

generally being non-zero, and then 

   
     

  [   ]     
       

In the Levi-Civita connection, the coefficients (the Christoffel symbols) are symmetric, and so the 

torsion tensor vanishes identically. Consequently, 

   
     

  [   ]     

                                                             
66 It follows from the transformation law of the Christoffel symbols that the right-hand side is a tensor of 
the indicated type. 
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A connection having this property (   
   ) is called symmetric. Hence, the Levi-Civita connec-

tion is a symmetric metric connection. 

5.4.6 Examples of Christoffel Symbols 

Since the Christoffel symbols play such an important role when it comes to the metric properties 

of manifolds, we will spend some time deriving the Christoffel symbols for a number of common 

manifolds. 

Example NN 

Let       be Euclidean space with its standard, Cartesian, coordinate system. Then 

   
    

because the metric is constant. 

 

Example NN 

Consider the cylinder of radius    , 

{(     )      2 +  2   2}  

with its usual coordinate system (   ). Then 

    (
 2  
  

)      ( 
 2  
  

) 

and 

   
    

because the metric is constant. 

 

Example NN 

Consider the 2-sphere of radius    , 

  
2  {     | |   } 

with its usual coordinate system (   ). Now 

    (
 2  
  2    2  

)      ( 
 2  
   2    2  

) 

(recall that    , by definition, is the matrix inverse of    ). Then, some manual effort yields 

   
  

 

 
   (     +            )  (

  

  
 

 
     

) 
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and 

   
2  

 

 
  2(     +            )  (

     
     

)  

5.4.7 Curvature 

Let 
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A.1 Linear Algebra 
In this appendix we will discuss one of the prerequisites for this book, namely, linear algebra. 

We do this for two reasons. First, we wish to introduce the notation used for vectors, which 

might not be familiar to some readers. Second, the transformation properties of vectors and lin-

ear transformations are used when we introduce tensors in Section 5.1. 

A.1.1 Vectors 
Consider the vector space    with its standard basis 

   (         ) 

 2  (         ) 

  

   (         )  

Define the (formal) row matrix of basis vectors 

  (   2    )  

Now, consider a vector   (    2     )    . We may write 

      +  
2 2 + +  

    (   2    )(

  

 2

 
  

)   (

  

 2

 
  

)      

where 

   (

  

 2

 
  

) 

is called the coordinate matrix for   in the basis  . Now, if the   vectors 

    

(

 

  
 

  
2

 
  
 )

   2   

(

 

 2
 

 2
2

 
 2
 )

        (

  
 

  
2

 
  
 

) 

are linearly independent, then they form a new basis for   . We similarly define 

  (   2    ) 

and we may refer to the basis as the   and the   bases, respectively. If   (    2     ) has 

coordinates     2      relative to  , then we may write 

   (

  

 2

 
  

)   (

  

 2

 
  

) 

which (obviously) is a short-hand notation for 

      +  
2 2 + +  

     
   +  

2 2 + +  
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For example, let     and consider the vector   (   ). Then, if    
 

2
(   ) and  2  

 

2
(    ), 

we have the situation shown in Figure 55. 
 

 

     +  2  

 (      2) (
 
 
)   (

 
 
) 

       2  

 (      2) (
 
  
)   (

 
  
) 

Figure 55. A vector has different coordinates in different bases. 

We now wish to derive the relationship between the coordinates, or ‘components’, of a vector in 

different bases. Suppose that 

   (

  

 2

 
  

) 

and that we introduce a new basis by (↑). We wish to find the coordinates of   in this new basis. 

In other words, we wish to find   unique scalars     2      such that 

      +  2 2 + +       

But this is 

   

(

 

  
 

  
2

 
  
 )

 +  2 

(

 

 2
 

 2
2

 
 2
 )

 + +    (

  
 

  
2

 
  
 

)   (

  

 2

 
  

) 

which is equivalent to the matrix equation (that is, system of linear equations)  

(

 

  
  2

    
 

  
2  2

2    
2

    
  
  2

    
 )

 (

  
 2
 
  

)  (

  

 2

 
  

)  

𝐞  

𝐞2 
𝐯 

𝐟  

𝐯 

𝐟2 
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Denote the     matrix in (↑) by  . Then, clearly, the columns of   are the coordinates of the new 

basis vectors expressed in the old basis, and       . Thus, we have shown that, as soon as one 

introduces a new basis, one can collect all information about the change of basis in the so-called 

change of basis matrix  . And then, if 

           

we have the result 

        

A.1.2 Linear Transformations 
Let         be a linear transformation. Given a basis   in   , there exists a unique matrix    

such that 

 ( )                
   

Obviously, the  th column of    consists of the coordinates (in the basis  ) of the image  (  ) of 

the  th basis vector   . Now change to a new basis   according to (↑), and let   be the change of 

basis matrix. Assume that   has matrix    relative to  , i.e., 

 ( )                
   

We wish to find the relation between the matrices    and   . To this end, pick a single 

           

Then 

                         (    ) 

and, consequently, 

                                       

This being so for every  , we have 

 ( )        
                

   

Uniqueness of the transformation matrix yields 

    
      

which is the relation between the matrices of   in the old and the new basis. 
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A.2 The Two-Body Gravitational-

Attraction ODE 
In Section 1.4.1 we encountered the initial-value problem 

   +    2    {
 ( )    
  ( )   

     (   ) 

while making inquiries about the distance  ( ) between two gravitationally attracted bodies at 

time    . In this appendix, we will solve this using exact methods, but we will find that the so-

lution ‘most likely’ cannot be expressed using elementary functions. First we integrate once, and 

we will find that the resulting first-order ODE is separable. 

 ̈ +
 

 2
  

 ̇  
⇔  ̈   ̇ +

 

 2
  ̇    

 

  
[
 

 
 ̇2  

 

 
]   

IC
 
 

 
 ̇2  

 

 
  

 

   ̇  
⇔  ̇   √  √

 

 
 
 

  
 

 
  

√  √
 
 
 
 
  

 ̇     
 

√  

 

  
[∫(

 

 
 
 

  
)
 
 
2
  ]    

where 

∫(
 

 
 
 

  
)
 
 
2
   ∫

  

√
 
 
 
 
  

 [
     

      2  
]  ∫

   

 2√    
  
 

[
 
 
   √    

  

 2      
  

       ]
 
 
 

 

 ∫
     

( 2 +   
  )2 

   ∫
  

( 2 +   
  )2

  

This last integral is a standard problem from elementary calculus. Let 

 2  ∫
  

( 2 +    )2
 

and 

   ∫
  

 2 +   
   ∫  

  

 2 +   
   

 

 2 +   
  +  ∫

 2  

( 2 +   
  )2

 

 
 

 2 +   
  +  ∫

 2 +   
     

  

( 2 +   
  )2

   
 

 2 +   
  +        

   2 

so that 

 2  
  
 
  +

   

 ( 2 +   
  )

 

where 

   ∫
  

 2 +   
    ∫

  

( √  )
2
+  

 √       ( √  ) +        

Consequently, 
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 2  
  
 2⁄

 
      ( √  ) +

   

 ( 2 +   
  )

+        

and 

∫(
 

 
 
 

  
)
 
 
2
     ∫

  

( 2 +   
  )2

    2     
 2⁄       ( √  )  

   
( 2 +   

  )
+        

    
 2⁄       (√    

  √  )  
√    

    
(    

  +   
  )

+        

    
 2⁄       (√     )  

  
 
√    

  +        

    
 2⁄       (√       )     √ 

     
  +        

Therefore, 

 ̈ +
 

 2
    

 

√  

 

  
[   

 2⁄       (√       )     √ 
     

  ]    

 
 

  
[  
 2⁄       (√       ) +    √ 

     
  ]  

 √  
  
   

 2⁄       (√       ) +    √ 
     

   √     

   
 2⁄       (√       ) +√   √ 

       √      

For simplicity, put 

  √         

Recall that   [    [. Clearly,   [   [ and the expression     above is a bijection between 

these intervals. The inverse is 

  
  

 2 +  
  

Hence, 

 ̈ +
 

 2
     

 2⁄        + √   
  

 2 +  
   √       

 2⁄ (       +
 

 2 +  
)  √      

Unfortunately, the function 

   ( )         +
 

 2 +  
 

is very hard to invert. But since 

  

  
 

 

( +  2)2
      [   [  

  is strictly increasing and thus     exists. Since    [   [  [  
 

2
[ we have     [  

 

2
[  [   [. 

Let      . It is trivial that 
  

  
      [  

 

2
[ and that  ( )    as   

 

2
. Now, 
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 ̈ +
 

 2
     

 2⁄  ( )  √      ( )    
  2⁄ √        (  

  2⁄ √    )  

 √         (  
  2⁄ √    )    

  

( (  
  2⁄

√    ))
2

+  

  

We have therefore arrived at the solution 

 ( )  
  

( (  
  2⁄

√    ))
2

+  

 

where   [  
 

2
[  [   [ is the inverse of          +

 

    
. 

Notice that  ( )    precisely as  (  
  2⁄

√    )   , i.e., as   
  2⁄

√     
 

2
, i.e., as 

  
 

 √  
  
 2⁄              

Thus, even though the solution    ( ) to the ODE (most likely) cannot be expressed using ele-

mentary functions, the ‘collision time’ can. [From a purely mathematical point of view, the ‘colli-

sion time’ may be defined as the (smallest) number              such that  ( )    as   

          .] 

A plot of  ( ) versus   is given in Figure 9, which is obtained by numerical integration for partic-

ular values of    and  . 
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A.3 Index 
Index goes here. 
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